CUSC 2017 - MEDICINA - Segundo Semestre CENTRO UNIVERSITÁRIO SÃO CAMILO

01. O maracujá, por ser rico em potássio, contribui para o controle da pressão arterial. A tabela apresenta os principais minerais encontrados em 100 g de polpa de maracujá.

minerais	teor (mg)						
cálcio	4,6						
magnésio	9,7						
fósforo	15,3						
ferro	0,3						
potássio	227,9						
zinco	0,2						
sódio	8,1						

(www.tabelanutricional.com.br. Adaptado.)

- **a)** Escreva a fórmula do composto binário formado entre átomos de fósforo e magnésio. Indique o caráter da ligação química que ocorre entre esses elementos.
- **b)** Calcule a concentração de potássio, em g/L, em 200 mL de suco preparado com 10 g de polpa de maracujá. Apresente os cálculos efetuados.

Resolução:

a) Fórmula do composto binário formado entre átomos de fósforo e magnésio: ${\rm Mg_3P_2}$.

Mg (grupo 2 ou IIA): Mg²⁺

P (grupo 15 ou VA): P³⁻

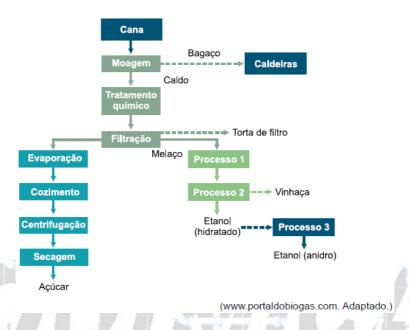
$$\left(Mg^{^{2+}}\right)_x \left(P^{^{3-}}\right)_y \Rightarrow Mg_{_3}P_{_2}$$

Caráter da ligação química que ocorre entre esses elementos: iônico.

b) A tabela fornecida no texto da questão apresenta os principais minerais encontrados em 100 g de polpa de maracujá. Neste caso 227,9 mg de potássio.

100 g de polpa de maracujá — 227,9 mg de potássio

10 g de polpa de maracujá — 22,79 mg de potássio

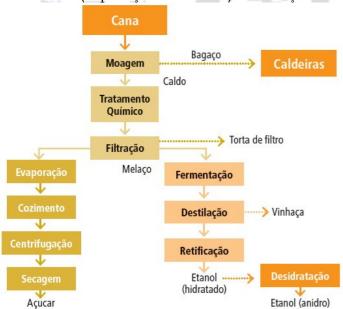

$$V_{\text{suco}} = 200 \text{ mL}$$

$$C = \frac{m_{pot\acute{a}ssio}}{V_{suco}} = \frac{22,79~mg}{200~mL}$$

$$C = 0.11395 \text{ g/L}$$

$$C \approx 0.114 \text{ g/L}$$

02. Analise o fluxograma que mostra a produção de açúcar e de etanol (C2H6O) a partir da canade-açúcar.


- **a)** Os processos numerados no fluxograma relacionam-se com a destilação, a desidratação e a fermentação. Identifique os processos 1 e 2.
- **b)** Escreva a equação balanceada da combustão completa do etanol e determine a quantidade, em mol, de CO₂ produzido na combustão completa de 23 kg de etanol anidro.

Resolução:

a) Processo 1 (obtenção do etanol): fermentação. Observação teórica:

$$\underbrace{\frac{C_{12}H_{22}O_{11}}_{Sacarose} + \underbrace{H_2O}_{Agua} \longrightarrow \underbrace{\frac{C_6H_{12}O_6}_{Glicos\,e} + \underbrace{\frac{C_6H_{12}O_6}_{Frutose}}}_{E\,tan\,ol} + \underbrace{\frac{C_6H_{12}O_6}_{Gas}}_{Cab^{onico}} + calor$$

Processo 2 (separação do etanol): destilação ou destilação fracionada.

Fluxograma da produção de açúcar e etanol de cana (adaptado de SEABRA, 2008)

PROFESSORA SONIA

b) Equação balanceada da combustão completa do etanol: $1C_2H_6O+3O_2 \longrightarrow 2CO_2+3H_2O$.

Determinação da quantidade de CO₂ em mol:

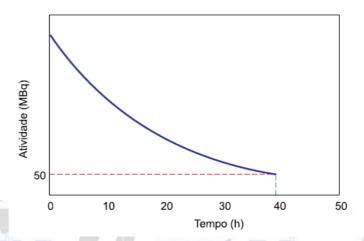
$$\begin{split} &C_2 H_6 O = 2 \times 12 + 6 \times 1 + 16 = 46 \\ &23 \text{ kg} = 23 \times 10^3 \text{ g} \\ &1 C_2 H_6 O + 3 O_2 \longrightarrow 2 C O_2 + 3 H_2 O \\ &46 \text{ g} \longrightarrow 2 \text{ mol} \\ &23 \times 10^3 \text{ g} \longrightarrow n_{\text{CO}_2} \\ &n_{\text{CO}_2} = \frac{23 \times 10^3 \text{ g} \times 2 \text{ mol}}{46 \text{ g}} \\ &n_{\text{CO}_2} = 1,0 \times 10^3 \text{ mol} \end{split}$$

03. Considere as equações das reações em que o magnésio metálico é um dos participantes.

Equação 1:
$$8\,\text{Mg(s)} + \text{Mg(NO}_3)_2(s) \longrightarrow \text{Mg}_3\text{N}_2(s) + 6\,\text{MgO(s)}$$
 $\Delta\text{H}^\circ = -3884 \text{ kJ}$ Equação 2: $M\text{g}_3\text{N}_2(s) \longrightarrow 3\,\text{Mg(s)} + \text{N}_2(g)$ $\Delta\text{H}^\circ = +463 \text{ kJ}$ Equação 3: $2\,\text{MgO(s)} \longrightarrow 2\,\text{Mg(s)} + \text{O}_2(g)$ $\Delta\text{H}^\circ = +1203 \text{ kJ}$

- **a)** Classifique as reações das equações 1 e 2 quanto ao calor envolvido na reação. Justifique sua resposta.
- **b)** Utilizando as equações das reações, determine a entalpia de formação de 1 mol de nitrato de magnésio sólido, Mg(NO₃)₂(s), a partir do magnésio metálico e dos gases nitrogênio e oxigênio.

Resolução:


- a) Equação 1: exotérmica, pois o valor do ΔH é menor do que zero ($\Delta H < 0$; negativo). Equação 2: endotérmica, pois o valor do ΔH é maior do que zero ($\Delta H > 0$; positivo).
- **b)** De acordo com a lei de Hess, vem:

Equação 1:
$$8 \text{Mg(s)} + 1 \text{Mg(NO}_3)_2(s) \longrightarrow 1 \text{Mg}_3 \text{N}_2(s) + 6 \text{MgO(s)} \qquad \Delta \text{H}^\circ = -3884 \text{ kJ (inverter)}$$
 Equação 2: $1 \text{Mg}_3 \text{N}_2(s) \longrightarrow 3 \text{Mg(s)} + 1 \text{N}_2(g) \qquad \Delta \text{H}^\circ = +463 \text{ kJ (inverter)}$ Equação 3: $2 \text{MgO(s)} \longrightarrow 2 \text{Mg(s)} + 1 \text{O}_2(g) \qquad \Delta \text{H}^\circ = +1203 \text{ kJ (×3; inverter)}$ $1 \text{Mg}_3 \text{N}_2(s) + 6 \text{MgO(s)} \longrightarrow 8 \text{Mg(s)} + 1 \text{Mg(NO}_3)_2(s) \qquad \Delta \text{H}_1 = +3884 \text{ kJ}$ $3 \text{Mg(s)} + 1 \text{N}_2(g) \longrightarrow 1 \text{Mg}_3 \text{N}_2(s) \qquad \Delta \text{H}_2 = -463 \text{ kJ}$ $4 \text{Mg(s)} + 3 \text{O}_2(g) \longrightarrow 6 \text{MgO(s)} \qquad \Delta \text{H}_3 = 3 \times (-1203 \text{ kJ})$ $4 \text{Mg(s)} + 1 \text{N}_2(g) + 3 \text{O}_2(g) \longrightarrow 6 \text{MgO(s)} \qquad \Delta \text{H} = (+3884 \text{ kJ} + (-463 \text{ kJ}) + (3 \times (-1203 \text{ kJ}))$ $4 \text{H} = (+3884 - 463 - 3609) \text{ kJ}$ $4 \text{H} = (-188 \text{ kJ/mol})$

04. O radionuclídeo X, meia-vida de 13 horas, é um dos radioisótopos mais utilizados em diagnóstico por imagem, e é obtido por irradiação de xenônio, segundo a equação global:

124
Xe + p + e⁻ \longrightarrow X + 2n + e⁺

O gráfico apresenta a radioatividade de uma amostra do radionuclídeo X em função do tempo.

a) Identifique o radionuclídeo X na forma ${}^A\!X$, em que A é seu número de massa e X o símbolo do elemento químico.

Apresente os cálculos efetuados.

b) Determine a atividade inicial da amostra do radionuclídeo X, sabendo que, após 39 horas, apresentava a atividade mostrada no gráfico. Apresente os cálculos efetuados.

Resolução:

a) A partir da equação global fornecida no texto e da classificação periódica, vem:

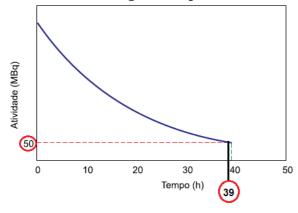
124
Xe $\Rightarrow ^{124}_{54}$ Xe

$$^{124}_{54}$$
Xe + $^{1}_{1}$ p + $^{0}_{-1}$ e⁻ \longrightarrow $^{A}_{2}$ X + $^{1}_{2}$ n + $^{0}_{+1}$ e⁻

$$124+1+0 = A+2\times 1+0$$

$$A = 122$$

$$54+1-1=Z+2\times 0+1$$


$$Z = 53 \Rightarrow {}^{122}_{53}X \Rightarrow {}^{122}_{53}I$$

Radionuclídeo X (iodo) na forma AX: 122 I.

b) O radionuclídeo X tem meia-vida de 13 horas, após 39 horas passaram-se três meias vidas. $t(\frac{1}{2}) = 13 \text{ h}$

Tempo total = $3 \times 13 \text{ h} = 39 \text{ h}$

De acordo com o gráfico após 39 h a atividade é de 50 MBq.

Então,

$$x \xrightarrow{13 \text{ h}} \frac{x}{2} \xrightarrow{13 \text{ h}} \frac{x}{4} \xrightarrow{13 \text{ h}} \frac{x}{8}$$

$$\frac{x}{8} = 50$$

$$x = 400$$

400 MBq
$$\xrightarrow{13 \text{ h}}$$
 200 MBq $\xrightarrow{13 \text{ h}}$ 100 MBq $\xrightarrow{13 \text{ h}}$ 50 MBq

Atividade inicial da amostra = 400 MBq

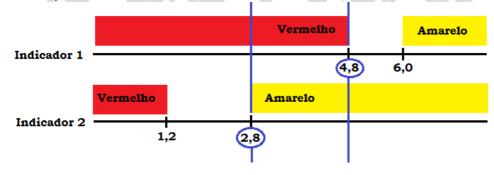
05. Em uma aula experimental de química, os indicadores vermelho de metila e púrpura de cresol foram utilizados para determinar a faixa de pH de uma solução aquosa (densidade 1,0 g/mL) contendo 3 % em massa de CH3COOH (ácido acético, massa molar 60 g/mol).

Indicador	Faixa de transição (pH)	Cor ácida	Cor básica		
(1) vermelho de metila	4,8 - 6,0	vermelho	amarelo		
(2) púrpura de cresol	1,2 – 2,8	vermelho	amarelo		
(3) azul de bromotimol	6,0 - 7,6	amarelo	azul		

A solução aquosa testada apresentou as cores vermelha e amarela com os indicadores 1 e 2, respectivamente.

a) Determine a faixa de pH da solução testada. Indique a cor da solução quando testada com o indicador azul de bromotimol.

b) Determine a concentração da solução de ácido acético, em g/L e em mol/L. Apresente os cálculos utilizados.


Resolução:

a) De acordo com o texto do enunciado e com as informações da tabela, vem:

Indicador 1: cor vermelha (pH < 4,8).

Indicador 2: cor amarela (pH >2,8).

Então,

Faixa de pH da solução testada: 2,8 < pH < 4,8 ou entre 2,8 e 4,8.

b) Determinação da concentração da solução de ácido acético, em g/L e em mol/L:

$$d = 1,0 g/mL = 1000 g/L$$

Porcentagem em massa = 3 %

$$M_{CH_2COOH} = 60 \text{ g/mol}$$

Em 1 L:

$$m_{\text{CH}_3\text{COOH}} = \frac{1000 \text{ g} \times 3 \text{ \%}}{100 \text{ \%}} = 30 \text{ g}$$

$$C_{\text{CH}_3\text{COOH}} = \frac{m_{\text{CH}_3\text{COOH}}}{1\ L}$$

$$C_{CH_3COOH} = 30 \text{ g/L}$$

$$n_{\text{CH}_3\text{COOH}} = \frac{1 \text{ mol} \times 30 \text{ g}}{60 \text{ g}}$$

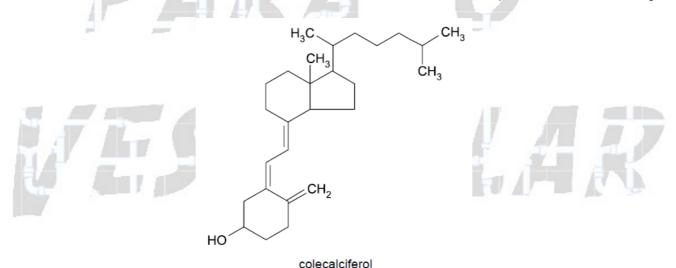
$$n_{CH_3COOH} = 0.5 \text{ mol}$$

$$[CH_3COOH] = 0.5 \text{ mol/L}$$

Outro modo:

$$[CH_3COOH] \times M_{CH_3COOH} = \tau \times d$$

$$[CH_3COOH] \times 60 \frac{g}{mol} = \frac{3}{100} \times 1000 \frac{g}{L}$$


$$[CH_3COOH] = 0.5 \text{ mol/L}$$

$$C_{CH,COOH} = [CH_3COOH] \times M_{CH,COOH}$$

$$C_{CH_3COOH} = 0.5 \frac{mol}{L} \times 60 \frac{g}{mol} = 30 g/L$$

06. A vitamina D3 (colecalciferol) é produzida quando há exposição da pele à luz solar. Esta vitamina possui importante função na absorção de cálcio, sendo portanto essencial ao desenvolvimento dos ossos e dentes.

(www.infoescola.com. Adaptado.)

- a) A vitamina D3 é hidrossolúvel ou lipossolúvel? Justifique sua resposta.
- b) Qual função orgânica está presente na estrutura do colecalciferol? Justifique sua resposta.

Resolução:

- **a)** A vitamina D3 é lipossolúvel, pois é predominantemente apolar (apresenta apenas um grupo OH em uma estrutura na qual predominam C e H).
- **b)** Função orgânica presente na estrutura do colecalciferol: álcool, pois a estrutura apresenta o grupo carbinol.

07. O butanoato de etila $(C_6H_{12}O_2)$ é a substância responsável pelo aroma de abacaxi em sucos artificiais. Essa substância pode ser produzida a partir da reação entre duas das substâncias cujas estruturas estão representadas no quadro.

Substâncias	Estruturas
1	ОН
2	ОН
3	/ ОН
4	∕∕он
5	~~

- a) Determine o teor percentual de carbono no butanoato de etila. Apresente os cálculos efetuados.
- **b)** Indique quais são as duas substâncias do quadro que, ao reagirem em condições experimentais adequadas, produzem o butanoato de etila. Escreva a equação química dessa reação.

Resolução:

a) Cálculo do teor percentual de carbono no butanoato de etila:

$$C_{6}H_{12}O_{2} = \underbrace{6\times12}_{Carbono=72} + 12\times1 + 2\times16 = 116 \text{ u}$$

$$116 \text{ u} - 100 \%$$

$$72 \text{ u} - p_{c}$$

$$p_{c} = \frac{72 \text{ u}\times100 \%}{116 \text{ u}} = 62,06896552 \%$$

$$p_{c} \approx 62 \%$$

b) As duas substâncias do quadro que, ao reagirem em condições experimentais adequadas, produzem o butanoato de etila são: 1 e 4.

ou

1 1 H		CLASSIFICAÇÃO PERIÓDICA												18 2 He			
hidrogênio 1,01	2											13	14	15	16	17	hélio 4,00
3	4											5	6	7	8	9	10
Li lítio	Be berílio											B boro	C carbono	N nitrogênio	O oxigênio	F flúor	Ne neônio
6,94	9,01											10,8	12,0	14,0	16,0	19,0	20,2
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
sódio	magnésio	_	4	_	0	7	0	0	10	44	40	alumínio	silício	fósforo	enxofre	cloro	argônio
23,0 19	24,3	3 21	4 22	5 23	6 24	7 25	8 26	9 27	10 28	11 29	12 30	27,0 31	28,1 32	31,0 33	32,1 34	35,5 35	40,0 36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potássio 39,1	cálcio 40,1	escândio 45.0	titânio 47.9	vanádio 50.9	crômio 52.0	manganês 54.9	ferro 55.8	cobalto 58.9	níquel 58.7	cobre 63.5	zinco 65.4	gálio 69,7	germânio 72,6	arsênio 74,9	selênio 79,0	bromo 79,9	criptônio 83,8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb rubídio	Sr estrôncio	Y ítrio	Zr zircônio	Nb nióbio	Mo molibdênio	Tc tecnécio	Ru rutênio	Rh ródio	Pd paládio	Ag	Cd cádmio	In índio	Sn estanho	Sb antimônio	Te telúrio	l iodo	Xe xenônio
85,5	87,6	88,9	91,2	92,9	96,0	techecio	101	103	106	prata 108	112	115	119	122	128	127	131
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs césio	Ba bário	57-71 lantanoides	Hf háfnio	Ta tântalo	W tungstênio	Re rênio	Os ósmio	lr irídio	Pt platina	Au ouro	Hg mercúrio	TI tálio	Pb chumbo	Bi bismuto	Po polônio	At astato	Rn radônio
133	137		178	181	184	186	190	192	195	197	201	204	207	209			
87 Fr	88 Ra	89-103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 FI	115 Mc	116 Lv	117 Ts	118 Og
frâncio	rádio	actinoides	rutherfórdio	dúbnio	seabórgio	bóhrio	hássio	meitnério	darmstádio	roentgênio	copernício	nihônio	fleróvio	moscóvio	livermório	tenessino	oganessônio
		1	57	50	50	00	04	00	00	0.4	0.5	00	07	60	00	70	74
				58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
Nú	Número atômico Símbolo		La lantânio 139	cério 140	praseodímio 141	neodímio 144	promécio	samário 150	európio 152	gadolínio 157	térbio 159	disprósio 163	hólmio 165	érbio 167	túlio 169	itérbio 173	lutécio 175
	nome		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ma	assa atômi	ca	Ac actínio	Th tório	Pa protactínio	U urânio	Np	Pu	Am	Cm cúrio	Bk	Cf califórnio	Es einstênio	Fm férmio	Md mendelévio	No nobélio	Lr laurêncio
232 231 238						neptúnio	plutônio	amerício	cuno	berquélio	camorno	emstemo	Termio	menderevio	Hobelio	laurendo	

Notas: Os valores de massas atômicas estão apresentados com três algarismos significativos. Não foram atribuídos valores às massas atômicas de elementos artificiais ou que tenham abundância pouco significativa na natureza. Informações adaptadas da tabela IUPAC 2016.

8