
FAMERP 2021 - MEDICINA FACULDADE DE MEDICINA DE SÃO JOSÉ DO RIO PRETO CONHECIMENTOS GERAIS E ESPECÍFICOS

CONHECIMENTOS GERAIS

51. Lâmpadas de neon são tubos contendo gases rarefeitos submetidos a uma diferença de potencial. Quando elétrons percorrem o tubo, colidem com as moléculas do gás e emitem luz com cor característica do elemento químico, conforme ilustra a figura.

A natureza da luz emitida pelas lâmpadas de neon pode ser explicada pelo(s) modelo(s) atômico(s) de

- (A) Rutherford.
- (B) Dalton e Rutherford.
- (C) Bohr e Dalton.
- (D) Dalton e Thomson.
- (E) Bohr.

Resolução: Alternativa E.

Böhr intuiu que deveriam existir muitos comprimentos de onda diferentes, desde a luz visível até a invisível. Ele deduziu que estes comprimentos de onda poderiam ser quantizados, ou seja, um elétron dentro de um átomo não poderia ter qualquer quantidade de energia, mas sim quantidades específicas e que se um elétron caísse de um nível de energia quantizado (nível de energia constante) para outro ocorreria a liberação de energia na forma de luz num único comprimento de onda.

52. A natureza das ligações intermoleculares define as propriedades das substâncias. Ocorre quebra de ligações intermoleculares em uma substância simples no processo representado pela equação:

- (A) $C(gr) \longrightarrow C(d)$
- (B) $O_2(\ell) \longrightarrow O_2(g)$
- (C) $2H_2O(\ell) \longrightarrow 2H_2(g) + O_2(g)$
- (D) $CO_2(s) \longrightarrow CO_2(g)$
- (E) $I_2(g) \longrightarrow I_2(s)$

Resolução: Alternativa B.

Ocorre quebra de ligações intermoleculares (entre moléculas) em uma substância simples (formada por um único tipo de elemento químico) no processo representado pela equação: $O_2(\ell) \longrightarrow O_2(g)$. Pois, neste caso tem-se a mudança de estado de agregação do líquido para gasoso devido ao rompimento das ligações do tipo dipolo-induzido ou dispersões de London presentes no oxigênio líquido.

53. O oxigênio é o produto gasoso da reação de decomposição do clorato de potássio (KClO3), de acordo com a equação:

$$2KC\ellO_3 \longrightarrow 2KC\ell + 3O_2$$

Considerando a constante universal dos gases igual a 0,082 atm·L· mol⁻¹·K⁻¹, o volume de gás oxigênio produzido na decomposição de 0,5 mol de clorato de potássio a 1 atm e 400 K é igual a

- (A) 32,8 L.
- (C) 49,2 L. (D) 67,2 L.

Resolução: Alternativa B.

$$2 \text{ KC} \ell \text{O}_3 \longrightarrow 2 \text{ KC} \ell + 3 \text{O}_2$$

$$0,5 \text{ mol}$$
 ——— n_{O_2}

$$n_{O_2} = \frac{0.5 \text{ mol} \times 3 \text{ mol}}{2 \text{ mol}} = 0.75 \text{ mol}$$

$$P = 1$$
 atm

$$T = 400 \text{ K}$$

$$R = 0.082 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot K^{-1}$$

$$P \times V_{O_2} = n_{O_2} \times R \times T$$

$$1 \text{ atm} \times V_{O_2} = 0.75 \text{ mol} \times 0.082 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot K^{-1} \times 400 \text{ K}$$

$$V_{O_2} = 24,6 L$$

54. Amostras das substâncias cloreto de potássio (KC ℓ), cloreto de amônio (NH $_4$ C ℓ), clorofórmio (CHC ℓ_3) e sacarose (C $_{12}$ H $_{22}$ O $_{11}$) foram colocadas, separadamente e não necessariamente nessa ordem, em quatro tubos de ensaio contendo água, identificados de 1 a 4. Cada sistema formado foi submetido a testes de condutividade elétrica e pH. Os resultados foram reunidos na tabela a seguir.

Tubo	Classificação do sistema	O sistema é condutor de corrente elétrica?	рН
1	homogêneo	sim	4,5
2	heterogêneo	não	
3	homogêneo	sim	7,0
4	homogêneo	não	7,0

As substâncias adicionadas aos tubos 1, 2, 3 e 4 foram, respectivamente,

- (A) $NH_4C\ell$, $CHC\ell_3$, $KC\ell$, $C_{12}H_{22}O_{11}$
- (B) KC ℓ , NH₄C ℓ , CHC ℓ ₃, C₁₂H₂₂O₁₁
- (C) KC ℓ , CHC ℓ_3 , NH₄C ℓ , C₁₂H₂₂O₁₁
- (D) $NH_4C\ell$, $C_{12}H_{22}O_{11}$, $KC\ell$, $CHC\ell_3$
- (E) $NH_4C\ell$, $KC\ell$, $C_{12}H_{22}O_{11}$, $CHC\ell_3$

Resolução: Alternativa A.

Tubo	Substância	Classificação do sistema	O sistema é condutor de corrente elétrica?	рН
1	$\mathrm{NH_4C\ell}$: sal de ácido forte e base fraca; meio ácido com presença de íons livres.	homogêneo	sim	4,5
2	$\mathrm{CHC}\ell_3$: não ioniza em água, ou seja, não forma íons livres.	heterogêneo	não	_
3	KC ℓ : sal de base forte e ácido forte; formação de meio neutro com presença de íons livres.	homogêneo	sim	7,0
4	$C_{12}H_{22}O_{11}$: dissolve-se em água formando moléculas neutras.	homogêneo	não	7,0

55. A mistura de 100 mL de uma solução de HC ℓ , de concentração 2×10^{-2} mol/L, com 400 mL de uma solução de NaOH, de concentração 6.25×10^{-3} mol/L, gera uma solução de caráter

- (A) ácido, com pH = 3.
- (B) básico, com pH = 10.
- (C) básico, com pH = 11.
- (D) ácido, com pH = 2.
- (E) neutro, com pH = 7.

Resolução: Alternativa C.

[Concentração molar] =
$$\frac{n}{V}$$
 \Rightarrow n = [Concentração molar] \times V
[HC ℓ] = 2 \times 10⁻² mol · L⁻¹]

$$\begin{bmatrix} HC\ell \end{bmatrix} = 2 \times 10^{-2} \ mol \cdot L^{-1} \\ V = 100 \ mL = 0,1 \ L \end{bmatrix} \ n_{HC\ell} = \begin{bmatrix} HC\ell \end{bmatrix} \times V = 2 \times 10^{-2} \ mol \cdot L^{-1} \times 0,1 \ L = 0,002 \ mol = 0,1 \ L \end{bmatrix}$$

$$\begin{bmatrix} \text{NaOH} \end{bmatrix} = 6,25 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1} \\ \text{V'} = 400 \text{ mL} = 0,4 \text{ L} \\ \end{bmatrix} \\ n_{\text{NaOH}} = \begin{bmatrix} \text{NaOH} \end{bmatrix} \times \text{V'} = 6,25 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1} \times 0,4 \text{ L} = 0,0025 \text{ mol} \times 10^{-3} \\ \end{bmatrix} \\ n_{\text{NaOH}} = \begin{bmatrix} \text{NaOH} \end{bmatrix} \times \text{V'} = 6,25 \times 10^{-3} \\ \text{mol} \cdot \text{L}^{-1} \times 0,4 \\ \text{L} = 0,0025 \\ \text{mol} \cdot \text{L}^{-1} \times 0,4 \\ \text{L} = 0,0025 \\ \text{mol} \cdot \text{L}^{-1} \times 0,4 \\ \text{L} = 0,0025 \\ \text{mol} \cdot \text{L}^{-1} \times 0,4 \\ \text{L} = 0,0025 \\ \text{mol} \cdot \text{L}^{-1} \times 0,4 \\ \text{L} = 0,0025 \\ \text{mol} \cdot \text{L}^{-1} \times 0,4 \\ \text{L} = 0,0025 \\ \text{mol} \cdot \text{L}^{-1} \times 0,4 \\ \text{L} = 0,0025 \\ \text{mol} \cdot \text{L}^{-1} \times 0,4 \\ \text{L} = 0,0025 \\ \text{mol} \cdot \text{L}^{-1} \times 0,4 \\ \text{L} = 0,0025 \\ \text{mol} \cdot \text{L}^{-1} \times 0,4 \\ \text{L} = 0,0025 \\ \text{mol} \cdot \text{L}^{-1} \times 0,4 \\ \text{L} = 0,0025 \\ \text{mol} \cdot \text{L}^{-1} \times 0,4 \\ \text{L} = 0,0025 \\ \text{mol} \cdot \text{L}^{-1} \times 0,4 \\ \text{L} = 0,0025 \\ \text{L} = 0,00$$

$$1HC\ell + 1NaOH \longrightarrow 1H_2O + 1NaC\ell$$

 $n_{\rm Excesso\ NaOH} = 0,0025\ mol - 0,0020\ mol = 0,0005\ mol$ (meio básico)

$$V_{total} = 100 \text{ mL} + 400 \text{ mL} = 500 \text{ mL} = 0.5 \text{ L}$$

$$NaOH \rightarrow Na^+ + OH^-$$

$$\left[OH^{-}\right] = \frac{n_{OH^{-}}}{V_{total}}$$

$$\left[OH^{-}\right] = \frac{0,0005 \ mol}{0.5 \ L} = 0,001 \ mol \cdot L^{-1} = 10^{-3} \ mol \cdot L^{-1}$$

$$pOH = -log[OH^{-}]$$

$$pOH = -log 10^{-3} = 3$$

$$pH + pOH = 14$$

$$pH + 3 = 14$$

$$pH = 14 - 3$$

$$pH = 11$$

56. O etanol (C₂H₆O) pode ser produzido em laboratório por meio da hidratação do etileno (C₂H₄), conforme a equação:

$$C_2H_4 + H_2O \longrightarrow C_2H_6O$$

A entalpia dessa reação pode ser calculada por meio da Lei de Hess, utilizando-se as equações:

$$C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O$$
 $\Delta H = -1322 \text{ kJ/mol de } C_2H_4$
 $C_2H_6O + 3O_2 \longrightarrow 2CO_2 + 3H_2O$ $\Delta H = -1367 \text{ kJ/mol de } C_2H_6O$

Com base nas informações fornecidas, a produção de 10 mol de etanol

- (A) absorve 2689 kJ de energia.
- (B) libera 45 kJ de energia.
- (C) libera 450 kJ de energia.
- (D) absorve 450 kJ de energia.
- (E) libera 2689 kJ de energia.

Resolução: Alternativa D.

$$1C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O \qquad \Delta H = -1.322 \text{ kJ/mol de } C_2H_4 \text{ (manter)}$$

$$1C_2H_6O + 3O_2 \longrightarrow 2CO_2 + 3H_2O \qquad \Delta H = -1.367 \text{ kJ/mol de } C_2H_6O \text{ (inverter)}$$

$$\begin{aligned} &1C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O & \Delta H_1 = -1.322 \text{ kJ} \\ &\underline{2CO_2 + 3H_2O \longrightarrow 1C_2H_6O + 3O_2} & \Delta H_2 = +1.367 \text{ kJ} \\ &\underline{1C_2H_4 + 1H_2O \longrightarrow 1C_2H_6O} & \Delta H = \Delta H_1 + \Delta H_2 \end{aligned}$$

$$\Delta \mathbf{H} = \Delta \mathbf{H}_1 + \Delta \mathbf{H}_2$$

$$\Delta H = -1.322 \text{ kJ} + (+1.367 \text{ kJ}) = +45 \text{ kJ/mol}$$

 $\Delta H > 0 \Rightarrow$ absorção de energia.

57. O fenol é uma substância de caráter ácido, que sofre ionização de acordo com a equação a seguir.

OH
$$O^{-}$$

$$+ H_{2}O$$

$$+ H_{3}O^{+} \quad K_{a} = 1,3 \times 10^{-10}$$
fenol
fenol
fon fenolato

Com base nessas informações, pode-se afirmar que:

- (A) o íon fenolato é um ácido conjugado.
- (B) a reação inversa é mais rápida que a reação direta.
- (C) o equilíbrio é fortemente deslocado para a esquerda.
- (D) a adição de uma base forte aumenta o valor da constante K_a.
- (E) no equilíbrio, predominam as espécies ionizadas.

Resolução: Alternativa C.

O equilíbrio está fortemente deslocado para a esquerda, pois o valor de Ka é muito pequeno, ou seja, a concentração de íons em solução é muito pequena.

$$\mathbf{H_5C_6} - \mathbf{OH} + \mathbf{H_2O} \xrightarrow[\text{Deslocamento} \\ \text{para a esquerda}]{} \mathbf{H_5C_6} - \mathbf{O^-} + \mathbf{H_5C_6} - \mathbf{O^-}$$

$$\frac{\left[H_{5}C_{6}-O^{-}\right]\times\left[H_{5}C_{6}-O^{-}\right]}{\left[H_{5}C_{6}-OH\right]}=1,3\times10^{-10}$$

$$\left[H_{5}C_{6}-O^{-}\right]\times\left[H_{5}C_{6}-O^{-}\right]=1,3\times10^{-10}\times\left[H_{5}C_{6}-OH\right]$$

$$[H_5C_6 - O^-] \times [H_5C_6 - O^-] = 1,3 \times 10^{-10} \times [H_5C_6 - OH]$$

58. Considere as equações químicas:

I.
$$N_2O_4(g) \iff 2NO_2(g)$$

II.
$$CaO(s) + CO_2(g) \iff CaCO_3(s)$$

III.
$$NH_4C\ell(s) \iff NH_3(g) + HC\ell(g)$$

IV.
$$SnO(s) + H_2(g) \iff Sn(s) + H_2O(g)$$

V.
$$4A\ell(s) + 3O_2(g) \rightleftharpoons 2A\ell_2O_3(s)$$

Considerando x um dos compostos químicos presentes nas equações citadas, a expressão da equilíbrio representada por $K_p = \frac{1}{p(x)}$ descreve corretamente o equilíbrio representado na equação

Resolução: Alternativa D.

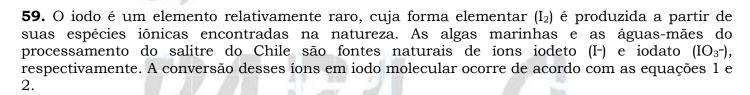
$$I. 1N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$$

$$\boldsymbol{K_p} = \frac{\left(\boldsymbol{p_{NO_{2(g)}}}\right)^2}{\left(\boldsymbol{p_{N_2O_{4(g)}}}\right)^1}$$

II.
$$1CaO_{(s)} + 1CO_{2(g)} \rightleftharpoons 1CaCO_{3(s)}$$

$$K_p = \frac{1}{p_{CO_{(p)}}} \implies K_p = \frac{1}{p(x)}$$

III.
$$1NH_4C\ell_{(s)} \rightleftharpoons 1NH_{3(g)} + 1HC\ell_{(g)}$$


$$\boldsymbol{K}_{p} = \left(\boldsymbol{p}_{NH_{3(g)}}\right)^{\!1} \times \left(\boldsymbol{p}_{HC\ell_{(g)}}\right)^{\!1}$$

IV.
$$1 \text{SnO}_{(s)} + 1 \text{H}_{2(g)} \rightleftharpoons 1 \text{Sn}_{(s)} + 1 \text{H}_2 \text{O}_{(g)}$$

$$K_p = \frac{\left(p_{H_2O_{(g)}}\right)^1}{\left(p_{H_{2(g)}}\right)^1}$$

IV.
$$4A\ell_{(s)} + 3O_{2(g)} \rightleftharpoons 2A\ell_2O_{3(s)}$$

$$K_{p} = \frac{1}{\left(p_{O_{2(g)}}\right)^{3}}$$

Equação 1:

$$MnO_2 + 2KI + 2H_2SO_4 \longrightarrow Mn^{2+} + I_2 + 2K^+ + 2H_2O + 2SO_4^{2-}$$

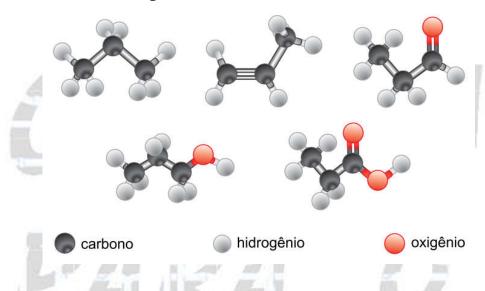
Equação 2:

$$2\text{IO}_3^{\scriptscriptstyle -} + 5\,\text{NaHSO}_3 \longrightarrow \text{I}_2^{\scriptscriptstyle -} + 5\,\text{Na}^{\scriptscriptstyle +} + 3\,\text{H}^{\scriptscriptstyle +} + 5\,\text{SO}_4^{2\scriptscriptstyle -} + \text{H}_2\text{O}$$

De acordo com os processos descritos, o elemento iodo sofre

- (A) redução na equação 1 e oxidação na equação 2.
- (B) oxidação em ambas as equações.
- (C) redução em ambas as equações.
- (D) oxirredução apenas na equação 1.
- (E) oxidação na equação 1 e redução na equação 2.

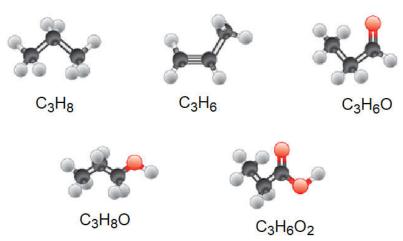
Resolução: Alternativa E.


$$KI: K I \Rightarrow Nox(I) = -1$$

$$I_2: \underbrace{I}_{0}\underbrace{I}_{0} \Rightarrow Nox(I) = 0$$

$$MnO_{_2} + 2 \ KI + 2 \ H_2SO_{_4} \longrightarrow Mn^{^2+} + I_{_2} + 2 \ K^{^+} + 2 \ H_2O + 2 \ SO_{_4}^{^2-}$$

$$2I^{-} \xrightarrow{Oxidação} I_2 + 2e^{-}$$


60. Considere as substâncias a seguir.

A substância que consome a menor quantidade de oxigênio em sua combustão completa é

- (A) o álcool.
- (B) o ácido carboxílico.
- (C) o alceno.
- (D) o alcano.
- (E) o aldeído.

Resolução: Alternativa B.

$$\begin{array}{l} \underbrace{1C_3H_8}_{Alcano} + 5O_2 \longrightarrow 3\,CO_2 + 4\,H_2O \\ \\ \underbrace{1C_3H_6}_{Alceno} + \frac{9}{2}O_2 \longrightarrow 3\,CO_2 + 3\,H_2O \\ \\ \underbrace{1C_3H_6O}_{Aldeido} + 4\,O_2 \longrightarrow 3\,CO_2 + 3\,H_2O \\ \\ \underbrace{1C_3H_8O}_{Alcool} + \frac{9}{2}O_2 \longrightarrow 3\,CO_2 + 4\,H_2O \\ \\ \underbrace{1C_3H_8O}_{Alcool} + \frac{9}{2}O_2 \longrightarrow 3\,CO_2 + 3\,H_2O \end{array}$$

A menor quantidade de oxigênio consumida é $\frac{7}{2}$ mol : $C_3H_6O_2$ (ácido carboxílico).

CONHECIMENTOS ESPECÍFICOS

09. Peças metálicas enferrujadas podem ser limpas por um processo conhecido como decapagem, no qual essas peças são imersas em um recipiente contendo ácido clorídrico. O ácido reage com a ferrugem, formando cloreto férrico e água, conforme a equação não balanceada:

$$Fe_2O_3 + HC\ell \longrightarrow FeC\ell_3 + H_2O$$

Em um teste de laboratório, uma peça de ferro oxidada foi submetida a uma decapagem, resultando na produção de 0,65 g de cloreto férrico.

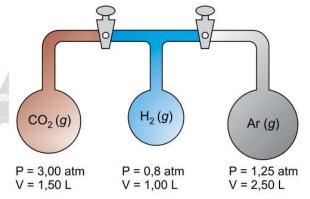
- **a)** A que funções inorgânicas pertencem os compostos de ferro que participam do processo de decapagem?
- **b)** Indique o valor da soma dos menores coeficientes inteiros da equação da reação de decapagem. Calcule o número de mols de HC ℓ consumidos no teste de decapagem realizado no laboratório.

Resolução:

a) $\operatorname{Fe_2O_3}$: óxido.

 $FeC\ell_3$: sal.

Balanceando pelo método das tentativas, vem: $1\text{Fe}_2\text{O}_3 + 6\text{HC}\ell \longrightarrow 2\text{FeC}\ell_3 + 3\text{H}_2\text{O}$.


Soma = 1 + 6 + 2 + 3 = 12.

Cálculo do número de mols de HCl consumidos no teste:

$$\begin{split} &\text{FeC}\ell_3 = 1 \times 55, 8 + 3 \times 35, 5 = 162, 3; \quad M_{\text{FeC}\ell_3} = 162, 3 \text{ g} \cdot \text{mol}^{-1} \\ &m_{\text{FeC}\ell_3} = 0, 65 \text{ g} \\ &n_{\text{FeC}\ell_3} = \frac{m_{\text{FeC}\ell_3}}{M_{\text{FeC}\ell_3}} \\ &n_{\text{FeC}\ell_3} = \frac{0, 65 \text{ g}}{162, 3 \text{ g} \cdot \text{mol}^{-1}} = 0,0040 \text{ mol} \end{split}$$

$$\begin{split} 1 Fe_2O_3 + 6 HC\ell & \longrightarrow 2 FeC\ell_3 + 3 \, H_2O \\ 6 \, mol & \longrightarrow 2 \, mol \\ n_{HC\ell} & \longrightarrow 0,0040 \, mol \\ n_{HC\ell} = \frac{6 \, mol \times 0,0040 \, mol}{2 \, mol} = 0,012 \, mol \end{split}$$

10. A figura ilustra uma montagem experimental composta por três recipientes contendo gases puros à mesma temperatura e separados por válvulas.

(https://a13-31450592.cluster13. Adaptado.)

Em determinado instante as válvulas são abertas, permitindo que as moléculas gasosas possam se difundir pelos recipientes até que seja atingido o equilíbrio. A temperatura permanece constante durante todo o processo.

- **a)** Classifique o sistema quanto ao número de fases após a abertura das válvulas. Considerando que a velocidade de difusão é inversamente proporcional à raiz quadrada da densidade dos gases, qual dos gases deve se difundir com a maior velocidade?
- **b)** Calcule a pressão parcial do gás carbônico na mistura após o equilíbrio. Organize os gases em ordem crescente de número de moléculas existentes no sistema.

Resolução:

a) Classificação do sistema quanto ao número de fases após a abertura das válvulas: monofásico (n gases, 1 fase).

Considerando que a velocidade de difusão é inversamente proporcional à raiz quadrada da densidade dos gases, vem:

Para dois gases:

$$\frac{\mathbf{v}_1}{\mathbf{v}_2} = \sqrt{\frac{\mathbf{d}_2}{\mathbf{d}_1}} \Rightarrow \frac{\mathbf{v}_1}{\mathbf{v}_2} = \sqrt{\frac{\left(\frac{\mathbf{P} \times \mathbf{M}_2}{\mathbf{R} \times \mathbf{T}}\right)}{\left(\frac{\mathbf{P} \times \mathbf{M}_1}{\mathbf{R} \times \mathbf{T}}\right)}} \Rightarrow \frac{\mathbf{v}_1}{\mathbf{v}_2} = \sqrt{\frac{\mathbf{M}_2}{\mathbf{M}_1}}$$

Quanto menor a massa molar, maior a velocidade de difusão do gás.

$$H_2 = 2 \times 1 = 2; \ M_{H_2} = 2 \ g \cdot mol^{-1}$$
 $CO_2 = 1 \times 12 + 2 \times 16 = 44; \ M_{CO_2} = 44 \ g \cdot mol^{-1}$ $Ar = 40; \ M_{Ar} = 40 \ g \cdot mol^{-1}$

Conclusão: o gás hidrogênio irá se difundir com maior velocidade, pois apresenta a menor massa molar.

b) Cálculo da pressão parcial do gás carbônico na mistura após o equilíbrio:

$$\begin{split} &P_{\text{CO}_2} = 3,00 \text{ atm} \\ &V_{\text{mistura}} = 1,50 \, \text{L} + 1,00 \, \text{L} + 2,50 \, \text{L} = 5,00 \, \text{L} \\ &P_{\text{CO}_2} \times V = p_{\text{CO}_2} \times V_{\text{mistura}} \\ &3,00 \text{ atm} \times 1,50 \, \text{L} = p_{\text{CO}_2} \times 5,00 \, \text{L} \\ &p_{\text{CO}_2} = \frac{3,00 \text{ atm} \times 1,50 \, \text{L}}{5,00 \, \text{L}} \\ &p_{\text{CO}_2} = 0,900 \text{ atm} \end{split}$$

Cálculo do número de moléculas de cada gás:

$$\begin{split} P\times V &= n\times R\times T \Rightarrow n = \frac{P\times V}{R\times T} \\ n_{\text{CO}_2} &= \frac{P_{\text{CO}_2}\times V_{\text{CO}_2}}{R\times T} \Rightarrow n_{\text{CO}_2} = \frac{3,00\times 1,50}{R\times T} = \frac{4,50}{R\times T} \text{ mol} \\ n_{\text{H}_2} &= \frac{P_{\text{H}_2}\times V_{\text{H}_2}}{R\times T} \Rightarrow n_{\text{H}_2} = \frac{0,8\times 1,00}{R\times T} = \frac{0,8}{R\times T} \text{ mol} \\ n_{\text{Ar}} &= \frac{P_{\text{Ar}}\times V_{\text{Ar}}}{R\times T} \Rightarrow n_{\text{Ar}} = \frac{1,25\times 2,50}{R\times T} = \frac{3,125}{R\times T} \text{ mol} \\ \frac{0,8}{R\times T} \text{ mol} &< \frac{3,125}{R\times T} \text{ mol} &< \frac{4,50}{R\times T} \text{ mol} \Rightarrow H_2 < \text{Ar} < \text{CO}_2. \end{split}$$

11. A solubilização do SO₂, gás produzido pela combustão do enxofre presente em combustíveis fósseis e responsável pela presença de ácido sulfuroso (H₂SO₃) na atmosfera, ocorre de acordo com a equação:

$$SO_2(g) + H_2O(\ell) \iff SO_2 \cdot H_2O(aq) \qquad K = 1,2 \times 10^{-5} \text{ mol} \cdot L^{-1} \cdot Pa^{-1}$$

Em um local onde a atmosfera está submetida a grandes emissões de SO_2 , coletou-se a água da chuva em determinada ocasião. A análise dessa água detectou a presença de $2,4\times10^{-3}$ mol/L de $SO_2\cdot H_2O$. A classificação da qualidade do ar, em relação à presença de dióxido de enxofre na atmosfera, é apresentada na tabela:

Qualidade	Pressão de SO ₂ na atmosfera (Pascal)
Boa	0 a 160
Moderada	160 a 330
Ruim	330 a 3000
Muito ruim	3000 a 6700
Péssima	> 6700

(www.ecycle.com.br. Adaptado)

a) Qual o nome do fenômeno atmosférico relacionado à presença do H₂SO₃ em grandes concentrações na água da chuva?

Qual a massa de SO₂·H₂O (massa molar = 82 g/mol) presente em um litro da água da chuva coletada no experimento descrito?

b) Utilizando a simbologia [] para concentração em mol/L e p() para pressão, escreva a expressão da constante de equilíbrio para a reação de solubilização do SO₂. Com base nas informações apresentadas, classifique a qualidade do ar na ocasião da análise.

Resolução:

a) Nome do fenômeno atmosférico relacionado à presença do H₂SO₃ em grandes concentrações na água da chuva: chuva ácida.

Cálculo da massa de $SO_2 \cdot H_2O$ (massa molar = 82 g/mol) presente em um litro da água da chuva:

$$\left[SO_2 \cdot H_2O\right] = 2,4 \times 10^{-3} \text{ mol} \cdot L^{-1}$$

$$M_{SO_2 \cdot H_2O} = 82 \text{ g} \cdot \text{mol}^{-1}$$

$$V = 1 L$$

$$[SO_2 \cdot H_2O] = \frac{n_{SO_2 \cdot H_2O}}{V}$$

$$\begin{split} \left[SO_{2}\cdot H_{2}O\right] &= \frac{m_{SO_{2}\cdot H_{2}O}}{M_{SO_{2}\cdot H_{2}O}\times V} \\ m_{SO_{2}\cdot H_{2}O} &= \left[SO_{2}\cdot H_{2}O\right]\times M_{SO_{2}\cdot H_{2}O}\times V \\ m_{SO_{2}\cdot H_{2}O} &= 2,4\times 10^{-3}\ mol\cdot L^{-1}\times 82\ g\cdot mol^{-1}\times 1\ L \\ m_{SO_{2}\cdot H_{2}O} &= 0,1968\ g \end{split}$$

b) Expressão da constante de equilíbrio para a reação de solubilização do SO₂:

$$\begin{split} &SO_{2}(g) + H_{2}O(\ell) \longleftrightarrow SO_{2} \cdot H_{2}O(aq) \\ &K_{c} = \frac{\left[SO_{2} \cdot H_{2}O\right]}{\left[SO_{2}\right]} \implies K = \frac{\left[SO_{2} \cdot H_{2}O\right]}{p(SO_{2})} \end{split}$$

Classificação da qualidade do ar na ocasião da análise: moderada.

$$\begin{split} \left[SO_2 \cdot H_2O\right] &= 2, 4 \times 10^{-3} \ mol \cdot L^{-1} \\ SO_2(g) + H_2O(\ell) &\rightleftharpoons SO_2 \cdot H_2O(aq) \quad K = 1, 2 \times 10^{-5} mol \cdot L^{-1} \cdot Pa^{-1} \\ K &= \frac{\left[SO_2 \cdot H_2O\right]}{p(SO_2)} \\ 1, 2 \times 10^{-5} mol \cdot L^{-1} \cdot Pa^{-1} &= \frac{2, 4 \times 10^{-3} \ mol \cdot L^{-1}}{p(SO_2)} \\ p(SO_2) &= \frac{2, 4 \times 10^{-3} \ mol \cdot L^{-1}}{1, 2 \times 10^{-5} mol \cdot L^{-1} \cdot Pa^{-1}} = 2, 0 \times 10^2 \ Pa \\ p(SO_2) &= 200 \ Pa \\ Moderada : 160 \ a \ 330 \ Pa. \end{split}$$

- **12.** Eletrofloculação é uma técnica de tratamento de água que consiste em gerar um agente floculante submetendo à corrente elétrica um eletrodo metálico imerso em água. Quando o eletrodo usado é o ferro, formam-se íons Fe²⁺, que hidrolisam, produzindo um hidróxido insolúvel capaz de aglutinar partículas menores de impurezas, que podem ser facilmente removidas por decantação ou flotação.
- **a)** Qual o nome dado ao eletrodo que sofre corrosão na eletrólise? Equacione a semirreação de corrosão do ferro metálico, produzindo o íon Fe²+.
- **b)** Equacione a reação de hidrólise do íon Fe²⁺. Indique o caráter (ácido, básico ou neutro) da solução após essa hidrólise.

Resolução:

a) Nome dado ao eletrodo que sofre corrosão (oxidação) na eletrólise: ânodo. Semirreação de corrosão do ferro metálico, produzindo o íon Fe^{2+} : $Fe \longrightarrow Fe^{2+} + 2e^{-}$.

b) Reação de hidrólise do íon
$$Fe^{2+}$$
: $Fe^{2+} + 2H_2O \xrightarrow{Meio} 2H^+ + Fe(OH)_2$.

Indicação do caráter da solução após a hidrólise: ácido.

13. O pH é um dos parâmetros de controle de efluentes industriais. A presença de compostos como soda cáustica (hidróxido de sódio) e cal virgem (óxido de cálcio) conferem alta alcalinidade à água desses efluentes, exigindo neutralização antes do descarte no meio ambiente. Um método alternativo ao uso de ácidos minerais na neutralização de efluentes consiste no borbulhamento de CO₂, gás que reage com a água produzindo ácido carbônico (H₂CO₃). As equações mostram a formação do ácido carbônico e sua primeira ionização.

$$CO_2 + H_2O \longrightarrow H_2CO_3$$

 $H_2CO_3 \longrightarrow H^+ + HCO_3^-$

- a) Escreva a fórmula da soda cáustica. Por que a cal virgem, em contato com a água, produz um efluente alcalino?
- **b)** Um volume de 200 litros de um efluente de pH = 12 foi neutralizado pelo borbulhamento de CO_2 . Considere que o volume molar dos gases seja igual a 25 L/mol nas condições da reação; que a neutralização ocorra pela reação $H^+ + OH^- \longrightarrow H_2O$, com o H^+ fornecido pela primeira ionização do ácido carbônico; e que a constante do produto iônico da água (K_w) seja 10^{-14} . Calcule o volume de CO_2 consumido nessa reação de neutralização.

Resolução:

a) Fórmula da "soda cáustica": NaOH.

A cal virgem (CaO) é um óxido básico que ao reagir com a água produz hidróxido de cálcio $(Ca(OH)_2)$, que tem caráter alcalino: CaO + $H_2O \longrightarrow \underbrace{Ca(OH)_2}_{Base}$.

b) Cálculo do volume de CO₂ consumido:

$$\begin{split} &V_{\rm efluente} = 200~L\\ &pH = 12 \Rightarrow \left[H^{\scriptscriptstyle +}\right] = 10^{-pH} = 10^{-12}~mol\,/\,L\\ &V_{\rm molar~dos~gases} = 25~L/mol \end{split}$$

$$\begin{array}{l} CO_2 + H_2O \longrightarrow H_2CO_3 \\ \underline{H_2CO_3} \longrightarrow H^+ + HCO_3^- \\ \hline CO_2 + H_2O \xrightarrow{\mathrm{Global}} H^+ + HCO_3^- \\ CO_2 + H^+ + OH^- \longleftrightarrow H^+ + HCO_3^- \\ 1CO_2 + 1OH^- \longleftrightarrow 1HCO_3^- \\ 25 L \longrightarrow 1 \ mol \\ V_{CO_2} \longrightarrow 2 \ mol \\ V_{CO_2} = \frac{25 \ L \times 2 \ mol}{1 \ mol} = 50 \ L \end{array}$$

14. A equação representa a reação de produção do isobutileno, um gás utilizado em sínteses orgânicas:

Para confirmar a formação do produto de interesse, borbulha-se o gás em solução contendo KMnO₄, um meio oxidante de coloração violeta que reage com alcenos, rompendo a ligação dupla e produzindo cetonas (se o carbono da dupla for terciário), ácidos carboxílicos (se o carbono da dupla for secundário) ou CO₂ (se o carbono da dupla for primário). A presença do alceno fará a solução violeta adquirir uma coloração marrom devido à formação de MnO₂.

- **a)** A qual função orgânica pertence o reagente da reação de produção do isobutileno? Escreva a fórmula estrutural de um isômero de posição desse reagente.
- **b)** Escreva a fórmula estrutural do composto orgânico formado na oxidação do isobutileno provocada pelo KMnO₄.

Dê o nome desse composto.

Resolução:

a) Função orgânica: álcool.

$$\begin{array}{c} \text{OH} \\ | \\ \text{H}_3\text{C} \longrightarrow \text{C} \longrightarrow \text{CH}_3 \\ | \\ \text{CH}_3 \end{array}$$

Álcool terciário (reagente)

Fórmula estrutural de um isômero de posição do álcool:

Álcool primário (isômero de posição)

b) Fórmula estrutural do composto orgânico formado na oxidação do isobutileno:

$$H_3C$$
 C
 CH_3

Nome: Propanona ou acetona.

Esquematicamente:

$$H_3C$$
— C — CH_2 CH_2 CH_3 CH_3 CH_3 CH_3 CH_3

Dados:

1 H hidrogēnio 1,01	2					CLASSII	FICAÇÃO) PERIÓI	DICA			13	14	15	16	17	2 He hélio 4,00
3 Li litio 6,94	4 Be berilio 9,01											5 B boro 10,8	6 C carbono 12,0	7 N nitrogênio 14,0	8 O oxigênio 16,0	9 F flúor 19,0	10 Ne neônio 20,2
11 Na sódio 23,0	12 Mg magnésio 24,3	3	4	5	6	7	8	9	10	11	12	13 Al alumínio 27,0	14 Si silicio 28,1	15 P fósforo 31,0	16 S enxofre 32,1	17 CI cloro 35,5	18 Ar argônio 40,0
19 K potássio 39,1	20 Ca cálcio 40,1	21 Sc escândio 45,0	22 Ti titānio 47,9	23 V vanádio 50,9	24 Cr crômio 52,0	25 Mn manganès 54,9	26 Fe ferro 55,8	27 Co cobalto 58,9	28 Ni niquel 58,7	29 Cu cobre 63,5	30 Zn zinco 65,4	31 Ga gálio 69,7	32 Ge germânio 72,6	33 As arsēnio 74,9	34 Se selênio 79,0	35 Br bromo 79,9	36 Kr criptônio 83,8
37 Rb rubídio 85,5	38 Sr estrôncio 87,6	39 Y (trio 88,9	40 Zr zircônio 91,2	41 Nb nióbio 92,9	42 Mo molibdênio 96,0	43 Tc tecnécio	44 Ru rutênio 101	45 Rh ródio 103	46 Pd paládio 106	47 Ag prata 108	48 Cd cádmio 112	49 In Indio 115	50 Sn estanho 119	51 Sb antimônio 122	52 Te telúrio 128	53 iodo 127	54 Xe xenônio 131
55 Cs césio 133	56 Ba bário 137	57-71 lantanoides	72 Hf háfnio 178	73 Ta tāntalo 181	74 W tungstěnio 184	75 Re rênio 186	76 Os ósmio 190	77 Ir iridio 192	78 Pt platina 195	79 Au ouro 197	80 Hg mercúrio 201	81 TI tálio 204	82 Pb chumbo 207	83 Bi bismuto 209	84 Po polônio	85 At astato	86 Rn radônio
87 Fr francio	88 Ra rádio	89-103 actinoides	104 Rf rutherfórdio	105 Db dúbnio	106 Sg seabórgio	107 Bh bóhrio	108 Hs hássio	109 Mt meitnério	110 Ds darmstádio	111 Rg roentgênio	112 Cn copernicio	113 Nh nihônio	114 FI fleróvio	115 Mc moscóvio	116 Lv livermário	117 Ts tenessino	118 Og oganessön

nome

57 La lantânio 139	58 Ce cério 140	59 Pr praseodímio 141	60 Nd neodímio 144	61 Pm promécio	62 Sm samário 150	63 Eu európio 152	64 Gd gadolínio 157	65 Tb térbio 159	66 Dy disprésio 163	67 Ho hólmio 165	68 Er érbio 167	69 Tm túlio 169	70 Yb itérbio 173	71 Lu lutécio 175
89 Ac actínio	90 Th tório 232	91 Pa protactinio 231	92 U uranio 238	93 Np neptúnio	94 Pu plutônio	95 Am americio	96 Cm cúrio	97 Bk berquélio	98 Cf califórnio	99 Es einstênio	100 Fm férmio	101 Md mendelévio	102 No nobělio	103 Lr laurêncio

Notas: Os valores de massas atômicas estão apresentados com três algarismos significativos. Não foram atribuídos valores às massas atômicas de elementos artificiais ou que tenham abundância pouco significativa na natureza. Informações adaptadas da tabela IUPAC 2016.

