IME 1985

FOLHA DE DADOS

 $\log 0.05 = -1.30$

 $\log 0.07 = -1.16$

 $\log 0.10 = -1$

 $\log 0.15 = -0.83$

 $\log 0.30 = -1.52$

1 Faraday = $96.500 \, \text{C}$

PESOS ATÔMICOS APROXIMADOS

Zn = 65 O = 16

16

H = 1

K = 39

Mn = 55

S = 32

C = 12

N = 14

CONSTANTES DOS GASES PERFEITOS

 $R = 0.082 \text{ L.atm.mol}^{-1}.\text{K}^{-1}$

 $R = 2,00 \text{ cal.} \text{K}^{-1}.\text{mol}^{-1}$

1 atm = 760 mmHg

Volume molar do gás ideal nas CNTP: V₀ = 22,4 L.mol⁻¹.

1ª. QUESTÃO: ITEM 1

Na produção contínua de sulfato de amônio, atomiza-se ácido sulfúrico a 100 % no interior de uma câmara fechada contendo amoníaco e nitrogênio a 50 % em volume. Devido a problemas operacionais apenas 50 % do ácido introduzido é consumido. O sal produzido, juntamente com o ácido não reagido, são continuamente retirados da câmara. Supondo uma adição de 49 g/min de $\rm H_2SO_4$, calcular o tempo necessário para haver uma queda de pressão de 5 % no interior da câmara.

DADOS: Pressão inicial: 1 atm

Volume da câmara: 10.000 L

Temperatura (suposta constante): 31 °C

2ª. QUESTÃO: ITEM 1

Dar as fórmulas estruturais dos seguintes ácidos:

- a) H₂S₂O₇ ácido pirossulfúrico
- b) H₃PO₂ ácido hipofosforoso; e
- c) H₂SO₅ ácido peroxissufúrico

3ª. QUESTÃO: ITEM 1

Balancear a equação: $CrI_3 + C\ell_2 + NaOH \longrightarrow NaIO_4 + Na_2CrO_4 + NaC\ell$.

4ª. QUESTÃO: ITEM 1

Para um litro de solução 0,10 molar de ácido acético, calcular:

- a) a quantidade de água que se deve adicionar para que o grau de dissociação seja duplicado;
- b) a variação de pH resultante.

5ª. QUESTÃO: ITEM 1

À temperatura de 147 °C, a decomposição do peróxido de di-t-butila, em fase gasosa, obedece à equação: $(CH_3)_3 COOC(CH_3)_3 \longrightarrow 2CH_3COCH_3 + C_2H_6$.

O estado cinético desta reação pela medida da pressão total da mistura em função do tempo, a volume constante, mostrou que a mesma é de 1ª. ordem.

Com base na tabela de dados, calcular a velocidade média da reação em relação ao peróxido de dit-butila, no intervalo de 0 a 10 min., em mol. L-1.min-1.

t (min)	0	6	10	14	22
P (mmHg)	180	200	210	220	240

6ª. QUESTÃO: ITEM 1

Calcular a massa mínima de reagentes para uma pilha seca que deve gerar 0,0100 A durante 10 horas. As semirreações são:

$$Zn \longrightarrow Zn^{2^+} + 2e^-$$

$$2MnO_2 + NH_4^+ + 2e^- \longrightarrow Mn_2O_3 + NH_3 + OH^-$$

7ª. QUESTÃO: ITEM 1

A combustão de 1 mol de naftaleno (C₁₀H₈) sólido a 25 °C, realizada em um calorímetro adiabático a volume constante, libera 1.227 kcal com formação apenas de um produto gasoso, o gás carbônico.

Calcular o calor liberado por esta reação a pressão constante.

8ª. QUESTÃO: ITEM 1

A substância origem de uma família radioativa, o $^{238}_{92}$ U, emite sucessivamente raios alfa, beta, beta, alfa, alfa e alfa, dando, respectivamente as substâncias X, Y, T, V e W. Pede-se:

- a) escrever as reações nucleares;
- b) grupar as sustâncias isóbaras; e
- c) grupar as substâncias isótopas.

9ª. QUESTÃO: ITEM 1

A um excesso de bicarbonato de potássio adicionam-se 125 mL de solução de ácido sulfúrico. O volume de gás liberado, medido a seco, a 20 °C e 765 °C mmHg foi de 2,5 L. Calcular a concentração de ácido expressas em números de equivalentes por litro.

10^a. QUESTÃO: ITEM 1

No quadro abaixo, indicar com um X as estruturas que apresentam caráter aromático de acordo com a regra de Hünckel. Justificar.

	ESTRUTURAS	CARÁTER AROMÁTICO	JUSTIFICATIVA
a)		TA AT MA	
b)	H		
c)	H	KAI I I	
d)			
e)	H ⊕		