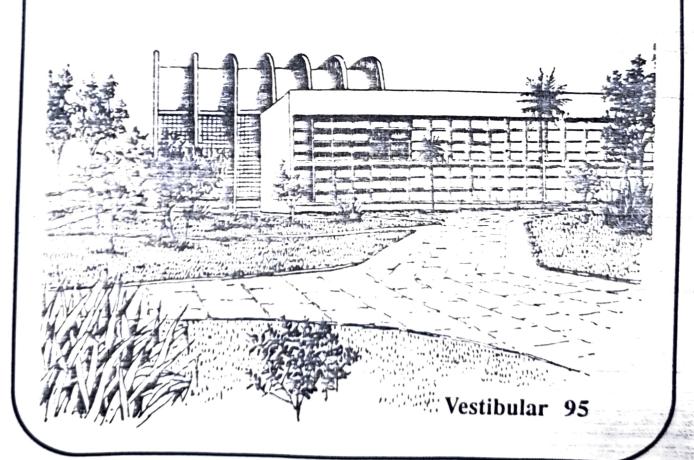
ラー・レン ・・・・・ かきべんき・ハイ


12/12/94

CENTRO TÉCNICO AEROESPACIAL INSTITUTO TECNOLÓGICO DE AERONÁUTICA

CADERNO DE QUESTÕES

FÍSICA

FÍSICA

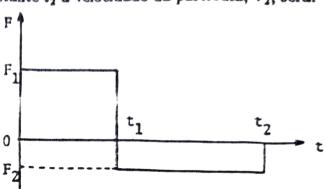
INSTRUÇÕES PARA A PROVA

- 1. O exame de Física, cuia duração é de TRÊS HORAS E TRINTA MINUTOS, consta de 25 QUESTOES DE MULTIPLA ESCOLHA.
- 2. Voce recebeu este CADERNO DE QUESTÕES, um CADERNO DE RESPOSTAS, e uma FOLHA DE RASCUNHO. Verifique se eles estão completos. Folhas de rascunho adicionais serão fornecidas apenas com a devolução da anterior.
- 3. Cada TESTE admite UMA ÚNICA resposta.
- 4. As respostas deverão ser acompanhadas de solução. Use o **CADERNO DE RESPOSTAS** e nele o espaço reservado para cada questão. A resolução das questões pode ser escrita a lápis.
- 5. Não serão consideradas respostas baseadas no raciocínio por exclusão.
- a. NÃO É PERMITIDO o uso de calculadora, regua de cálculo ou tabelas.
- 7. No CADERNO DE RESPOSTAS existe uma reprodução da FOLHA DE LEITURA ÓPTICA. Esta deverá ser preenchida com um simples traço a lápis no decorrer da prova. Antes de terminar a prova você receberá uma FOLHA DE LEITURA ÓPTICA, onde você deverá assinalar as alternativas escolhidas, usando caneta hidrográfica ou hidrocor (azul ou preta) procurando preencher todo o retângulo destinado à alternativa, sem extrapolar seus limites.
- 8. CUIDADO PARA NÃO ERRAR NO PREENCHIMENTO DA FOLHA DE LEITURA OPTICA. Se houver algum erro avise o fiscal, que lhe fornecerá uma folha extra com o cabeçalho refeito, de forma igual à folha original.
- 9. Aguarde o aviso do FISCAL para iniciar a prova. Ao terminá-la, avise o FISCAL.
- 10. O candidato que retiver seu CADERNO DE RESPOSTAS ou a FOLHA DE LEITURA ÓPTICA estará automaticamente desclassificado.
- 11. Nenhum candidato poderá se retirar antes de decorridas DUAS HORAS do início da prova.

Boa Sorte !!!

INSTITUTO TECNOLÓGICO DE AERONÁUTICA PROVA DE FÍSICA / 1995

QUESTÃO 1 - A figura mostra o gráfico da força resultante agindo numa partícula de massa m, inicialmente em repouso. No instante t_2 a velocidade da partícula, V_2 , será:


A.(\(\frac{1}{2}\)
$$V_2 = [(F_1 + F_2)t_1 - F_2t_2]/m$$

B.()
$$V_2 = [(F_1 - F_2)t_1 - F_2t_2]/m$$

C.()
$$V_2 = [(F_1 - F_2)t_1 + F_2t_2]/m$$

$$D.() V_2 = (F_1 t_1 - F_2 t_2) / m$$

E.()
$$V_2 = [(t_2 - t_1)(F_1 - F_2)]/2m$$

QUESTÃO 2 - Uma massa m_1 em movimento retilíneo com velocidade de $8,0 \times 10^{-2}~m/s$ colide frontal e elasticamente com outra massa m_2 em repouso e sua velocidade passa a ser $5,0 \times 10^{-3}$ m/s. Se a massa m_2 adquire a velocidade de $7,5 \times 10^{-2}$ m/s podemos concluir que a massa m_1 é:

A.() $10 m_2$

B.() $3,2 m_2$ C.() $0,5 m_2$ D.() $0,04 m_2$

 $E.(?) 2,5 m_2$

QUESTÃO 3 - Um projétil de massa m=5,00 g atinge perpendicularmente uma parede com a velocidade V=400~m/s e penetra 10,0~cm na direção do movimento. (Considere constante a desaceleração do projétil na parede).

A.() Se $V = 600 \, m/s$ a penetração seria de 15,0 cm

B.() Se $V = 600 \, m/s$ a penetração seria de 225 cm

C. Se V = 600 m/s a penetração seria de 22,5 cm

D.() Se $V = 600 \, m/s$ a penetração seria de 150 cm

E.() A intensidade da força imposta pela parede à penetração da bala é 2N

QUESTÃO 4 - Um pêndulo simples no interior de um avião tem a extremidade superior do fio fixa no teto. Quando o avião está parado o pêndulo fica na posição vertical. Durante a corrida para a decolagem a aceleração a do avião foi constante e o pêndulo fez um ângulo heta com a vertical. Sendo g a aceleração da gravidade, a relação entre a , θ e g é:

A.()
$$g^2 = (1 - sec^2\theta) a^2$$

A.()
$$g^2 = (1 - sec^2\theta) a^2$$
 B.() $g^2 = (a^2 + g^2) sen^2\theta$

$$C \bowtie a = g t g \theta$$

$$D.() a = g sen\theta cos\theta$$

D.()
$$a = g \operatorname{sen}\theta \cos\theta$$
 E.() $g^2 = a^2 \operatorname{sen}^2\theta + g^2 \cos^2\theta$

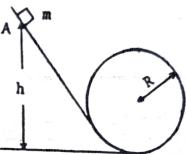
QUESTÃO 5 - Um avião voa numa altitude e velocidade de módulo constantes, numa trajetória circular de raio R, cujo centro coincide com o pico de uma montanha onde está instalado um canhão. A velocidade tangencial do avião é de 200 m/s e a componente horizontal da velocidade da bala do canhão é de 800 m/s. Desprezando-se efeitos de atrito e movimento da Terra e admitindo que o canhão está direcionado de forma a compensar o efeito da atração gravitacional, para atingir o avião, no instante do disparo o canhão deverá estar apontando para um ponto à frente do mesmo situado a :

A.() 4,0 rad B.() 4,0 π rad C.() 0,25 R rad D.() 0,25 π rad E.(() 0,25 rad

QUESTÃO 6 · Dois blocos de massas $m_1 = 3,0 \ kg \ e \ m_2 = 5,0 \ kg$ deslizam sobre um plano, inclinado de 60° com relação à horizontal, encostados um no outro com o bloco 1 acima do bloco 2. Os coeficientes de atrito cinético entre o plano inclinado e os blocos são $\mu_{1c} = 0, 4$ e $\mu_{2c} = 0, 6$ respectivamente, para os blocos 1 e 2. Considerando a aceleração da gravidade $g = 10 \, m/s^2$, a aceleração a_1 do bloco 1 e a força F_{12} que o bloco 1 exerce sobre o bloco 2 são respectivamente:

A. $\bigcirc 6,0 \text{ m/s}^2$; 2,0 N B.() 0,46 m/s²; 3,2 N C.() 1,1 m/s²; 17 N

D() $8.5 \, m/s^2$; $26 \, N$ E.() $8.5 \, m/s^2$; $42 \, N$


QUESTÃO 7 - A figura ilustra um carrinho de massa m percorrendo um trecho de uma montanha russa. Desprezando-se todos os atritos que agem sobre ele e supondo que o carrinho seja abandonado em A, o menor valor de h para que o carrinho efetue a tragetória completa é:

A.() (3R)/2S(M) B.**№** (5R)/2

C.() 2R

D.() $\sqrt{(5gR)/2}$

Não E. (3R

QUESTÃO 8 - Todo caçador ao atirar com um rifle, mantém a arma firmemente apertada contra o ombro evitando assim o "coice" da mesma. Considere que a massa do atirador é 95,0 kg, a massa do rifle é 5,00 kg, e a massa do projétil é 15,0 g a qual é disparada a uma velocidade de 3,00 × 104 cm/s. Nestas condições, a velocidade de recuo do rifle (v_r) quando se segura muito frouxamente a arma e a velocidade de recuo do atirador (v.) quando ele mantém a arma firmemente apoiada no ombro serão respectivamente:

A.() 0,90 m/s; $4,7 \times 10^{-2} \text{ m/s}$

B.() $90,0 \ m/s$; $4,7 \ m/s$ D. $\bigotimes 0,90 \ m/s$; $4,5 \times 10^{-2} \ m/s$ C.() 90,0 m/s; 4,5 m/s

E.() $0.10 \ m/s$; $1.5 \times 10^{-2} \ m/s$

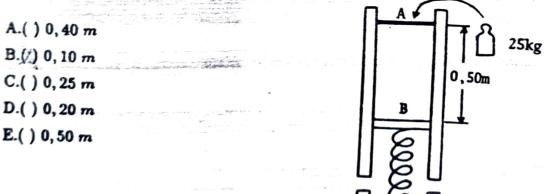
QUESTÃO 9 - Um pingo de chuva de massa $5,0 \times 10^{-6}$ kg cai com velocidade constante de uma altitude de 120 m, sem que a sua massa varie, num local onde a aceleração da gravidade g é 10 m/s^2 . Nestas condições, a força de atrito F_a do ar sobre a gota e a energia Ea dissipada durante a queda são respectivamente:

A.() $5,0 \times 10^{-4}N$; $5,0 \times 10^{-4}J$ B.() $1,0 \times 10^{-3}N$; $1,0 \times 10^{-1}J$ C.() $5,0 \times 10^{-4}N$; $5,0 \times 10^{-2}J$ D.(X) $5,0 \times 10^{-4}N$; $6,0 \times 10^{-2}J$

E.() $5,0 \times 10^{-4}N$; $E_{\bullet} = 0J$.

QUESTÃO 10 - O verão de 1994 foi particularmente quente nos Estados Unidos da América. A diferença entre a máxima temperatura do verão e a mínima do inverno anterior foi 60° C. Qual o valor desta diferença na escala Fahrenheit?

A.00 108° F B.() $60^{\circ} F$ C.() 140°F D. X 33° F

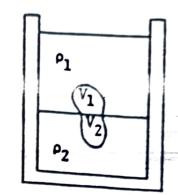

2

QUESTÃO 11 - Você é convidado a projetar uma ponte metálica, cujo comprimento será de 2,0 km. Considerando os efeitos de contração e expansão térmica para temperaturas no intervalo de $-40^{\circ}F$ a $110^{\circ}F$ e o coeficiente de dilatação linear do metal que é de 12×10^{-8} °C⁻¹, quai a máxima variação esperada no comprimento da ponte ? (O coeficiente de dilatação linear é constante no intervalo de temperatura considerado) A.() 9,3 m B.() 2,0 m C.() 3,0 m D.() 0,93 m E.() 6,5 m

QUESTÃO 12 - Considere que M_T é a massa da Terra, R_T o seu raio, g a aceleração da gravidade e G a constante de gravitação universal. Da superfície terrestre e verticalmente para cima, desejamos lançar um corpo de massa m para que, desprezada a resistência do ar ele se eleve a uma altura acima da superfície igual ao raio da Terra. A relocidade inicial V do corpo neste caso deverá ser de:

A.()
$$V = \sqrt{(G M_T)/(2 R_T)}$$
 $V = \sqrt{(g R_T)/m}$
C.() $V = \sqrt{(G M_T)/(R_T)}$ D.() $V = (g R_T)/2$
E.() $V = \sqrt{(g G M_T)/(m R_T)}$

QUESTÃO 13 - A figura mostra um tubo cilíndrico com secção transversal constante de área $S = 1.0 \times 10^{-2} \ m^2$ aberto nas duas extremidades para a atmosfera cuja pressão é $P_a = 1.0 \times 10^5 \ Pa$. Uma certa quantidade de gás ideal está aprisionada entre dois pistões $A \in B$ que se movem sem atrito. A massa do pistão A é desprezível e a do pistão B é M. O pistão B está apoiado numa mola de constante $k = 2.5 \times 10^3 \ N/m$ e a aceleração da gravidade é $g = 10 \ m/s^2$. Inicialmente, a distância de equilíbrio entre os pistões é de $0.50 \ m$. Uma massa de $25 \ kg$ é colocada vagarosamente sobre A, mantendo-se constante a temperatura. O deslocamento do pistão A para baixo, até a nova posição de equilíbrio, será:



QUESTÃO 14 - Uma gaivota pousada na superfície da água, cujo índice de refração em relação ao ar é n=1,3 observa um peixinho que está exatamente abaixo dela, a uma profundidade de 1,0 m. Que distância, em linha reta deverá nadar o peixinho para sair do campo visual da gajvota?

A.() 0,84 m B.() 1,2 m C.() 1,6 m D.() 1,4 m E.() O passarinho não conseguirá fugir do campo visual da gaivota

QUESTÃO 15 - Num recipiente temos dois líquidos não miscíveis com massas es-Pecíficas $\rho_1 < \rho_2$. Um objeto de volume V e massa específica ρ sendo $\rho_1 < \rho < \rho_2$ fica em equilibrio com uma parte em contacto com o líquido 1 e outra com o líquido 2 como mostra a figura. Os volumes V_1 e V_2 das partes do objeto que ficam imersos em 1 e 2

A.()
$$V_1 = V(\rho_1/\rho)$$

 $V_2 = V(\rho_2/\rho)$
B.() $V_1 = V(\rho_2 - \rho_1)/(\rho_2 - \rho)$
 $V_2 = V(\rho_2 - \rho_1)/(\rho - \rho_1)$
C.() $V_1 = V(\rho_2 - \rho_1)/(\rho_2 + \rho_1)$
 $V_2 = V(\rho - \rho_1)/(\rho_2 + \rho_1)$
D.() $V_1 = V(\rho_2 - \rho)/(\rho_2 + \rho_1)$
 $V_2 = V(\rho + \rho_1)/(\rho_2 + \rho_1)$
E. $V_1 = V(\rho_2 - \rho)/(\rho_2 - \rho_1)$
 $V_2 = V(\rho - \rho_1)/(\rho_2 - \rho_1)$

QUESTÃO 16 - Um objeto tem altura h. = 20 cm e está situado a uma distância $d_0 = 30$ cm de uma lente. Esse objeto produz uma imagem virtual de altura $h_i = 4,0$ cm. A distância da imagem à lente, a distância focal e o tipo da lente são respectivamente:

B.() 1,7 cm; 30 cm; divergente

C.(\times) 6,0 cm; -7,5 cm; divergente D.() 6,0 cm; 5,0 cm; divergente

E.() 1,7 cm; -5,0 cm; convergente

QUESTÃO 17 - Numa experiência de Young é usada luz monocromática. A distância entre as fendas F_1 e F_2 é $h=2,0\times 10^{-2}$ cm. Observa-se num anteparo, a uma distância L=1,2 m das fendas, que a separação entre duas franjas escuras vizinhas é de 3,0 × 10⁻¹ cm. Sendo válida a aproximação $tg \theta = sen \theta$:

I - qual é o comprimento de onda λ da luz usada na experiência?

II - qual é a frequência f dessa luz? (A velocidade da luz no ar é $3.0 \times 10^8 \ m/s$) III - qual é o comprimento de onda λ' dessa luz dentro de um bloco de vidro cujo índice de refração é n=1,50 em relação ao ar ?

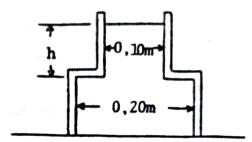
II A.() $3, 3 \times 10^{-7} m$ $6,0 \times 10^{14} \ Hz$ $5.0 \times 10^{-7} m$ B.() $4.8 \times 10^{-7} m$ $6,0 \times 10^{\circ} Hz$ $5,4 \times 10^{-7} \, m$ C.() 5, 0 × 10⁻³ m $6,0 \times 10^{15} Hz$ $3,3 \times 10^{-3} m$ D.() $5,0 \times 10^{-7} m$ $6,0 \times 10^{14} Hz$ $5,0 \times 10^{-7} m$ E.(x) 5,0 × 10⁻⁷ m $6.0\times10^{14}~Hz$ $3,3 \times 10^{-7} m$

QUESTÃO 18- A faixa de emissão de rádio em frequência modulada, no Brasil, vai de, aproximadamente, 38 MHz a 108 MHz. A razão entre o maior e o menor comprimento de onda desta faixa é:

A.(0)1,2B.() 15 C.() 0,63 D.() 0,81

E.() Impossível calcular não sendo dada a velocidade de propagação da onda

QUESTÃO 19 - Um recipiente formado de duas partes cilíndricas sem fundo, de massa m = 1,00 kg cujas dimensões estão representadas na figura encontra-se sobre uma mesa lisa com sua extremidade inferior bem ajustada à superfície da mesma. Coloca-se um líquido no recipiente e quando o nível do mesmo atinge uma altura h=0,050~m,~orecipiente sob ação do líquido se levanta. A massa específica desse líquido é:


A.() $0, 13 \, g/cm^3$

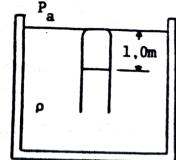
B.() 0,64 g/cm3

C.() 2,55 g/cm3

 $D_{*}()$ 0, 85 g/cm³

 $E() 0, 16 g/cm^3$

QUESTÃO 20 - Um tubo cilíndrico de secção transversal constante de área S fechado numa das extremidades e com uma coluna de ar no seu interior de 1,0 m encontra-se em equilibrio mergulhado em água cuja massa específica é $\rho = 1,0 \ g/cm^3$ com o topo do tubo coincidindo com a superfície (veja figura). Sendo $P_a=1,0\times 10^5~Pa$ a pressão atmosférica e $g = 10 \text{ m/s}^2$ a aceleração da gravidade, a que distancia h deverá ser elevado o topo do tubo com relação à superfície da água para que o nível de água dentro e fora do mesmo coincidam?


A.() 1, 1, m

B.()1,0m

C.K. 10 m

D.() 11 m

E.() 0,91 m

QUESTÃO 21 - Se duas barras, uma de alumínio com comprimento L_1 e coeficiente de dilatação térmica $\alpha_1=2,30\times 10^{-5}~^{\circ}C^{-1}$ e outra de aço com comprimento $L_2~>~L_1$ e coeficiente de dilatação térmica $\alpha_2=1,10\times 10^{-5}$ ° C^{-1} , apresentam uma diferença em seus comprimentos a 0° C, de 1000 mm e esta diferença se mantém constante com a variação da temperatura, podemos concluir que os comprimentos L_1 e L_2 são a 0° C:

A.() $L_1 = 91,7 mm$

 $L_2 = 1091, 7 mm$

B.() $L_1 = 67,6 \ mm$ $L_2 = 1067,6 \ mm$

 $C. \bigcirc L_1 = 917 mm$

 $L_2 = 1917 mm$

D.() $L_1 = 676 mm$

 $L_2 = 1676 \ mm$

 $E.() L_1 = 323 mm$

 $L_2=1323\ mm$

QUESTÃO 22 - Uma partícula com carga q e massa M move-se ao longo de uma reta com velocidade v constante numa região onde estão presentes um campo elétrico de 500 V/m e um campo de indução magnética de 0,10 T. Sabe-se que ambos os campos e a direção de movimento da partícula são mutuamente perpendiculares. A velocidade da partícula é:

A.() 500 m/s B.() constante para quaisquer valores dos campos elétrico e magnético

C.() $(M/q) 5,0 \times 10^3 m/s$ D.() $5,0 \times 10^3 m/s$

E. & Faltam dados para o cálculo

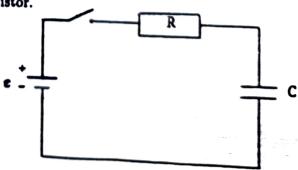
QUESTÃO 23 - Um pêndulo simples é construído com uma esfera metálica de massa $m=1,0\times 10^{-4}~kg$ carregada com uma carga elétrica de $3,0\times 10^{-5}~C$ e um fio isolante de comprimento l=1,0~m de massa desprezível. Este pêndulo oscila com período P num local em que $g=10,0~m/s^2$. Quando um campo elétrico uniforme e constante \vec{E} é aplicado verticalmente em toda região do pêndulo o seu período dobra de valor. A intensidade do campo elétrico E é de:

A.() $6,7 \times 10^3 \ N/C$ B.() $42 \ N/C$ C.() $6,0 \times 10^{-6} \ N/C$ E.() $25 \ N/C$

QUESTÃO 24 - No circuito mostrado na figura a força eletromotriz e sua resistência interna são respectivamente ϵ e r. R_1 e R_2 são duas resistências fixas. Quando o cursor móvel da resistência R se move para A, a corrente i_1 em R_1 e a corrente i_2 em R_2 variam da seguinte forma:

9		A	
i_1	i ₂	\mathbf{i}_1	
A. Cresce B.() Cresce C.() Decresce D.() Decresce E.() Não varia	Decresce Cresce Cresce Decresce Decresce		
		$\frac{\mathbf{R}_{r}}{\mathbf{R}_{r}}$ \mathbf{i}_{2}	

QUESTÃO 25 - No circuito abaixo, o capacitor está inicialmente descarregado. Quando a chave é ligada, uma corrente flui pelo circuito até carregar totalmente o capacitor. Podemos então afirmar que:


A.() a energía que foi despendida pela fonte de força eletromotriz ϵ é $(C\epsilon^2)/2$

B.() a energia que foi dissipada no resistor independe do valor de R.

C.() a energia que foi dissipada no resistor é proporcional a R²

D. Ja energia que soi armazenada no capacitor seria maior se R sosse menor.

E.() Nenhuma energia soi dissipada no resistor.

