ITA 2004 MATEMÁTICA

Vestibular

NOTAÇÕES

 \mathbb{C} : conjunto dos números complexos.

Q: conjunto dos números racionais.

 $\mathbb{R}\,$: conjunto dos números reais.

 \mathbb{Z} : conjunto dos números inteiros.

 $\mathbb{N} = \{0,1,2,3,...\}.$

 $\mathbb{N}^* = \{1, 2, 3, ...\}$.

i: unidade imaginária; $i^2 = -1$.

z = x + iy, $x, y \in \mathbb{R}$.

 \bar{z} : conjugado do número $z, z \in \mathbb{C}$.

|z|: módulo do número $z, z \in \mathbb{C}$.

 $[a,b] = \{x \in \mathbb{R}; a \le x \le b\}.$

 $]a, b[= \{x \in \mathbb{R}; a < x < b\}.$

 \emptyset : conjunto vazio.

 $A \setminus B = \left\{ x \in A; \ x \notin B \right\}.$

n(U): número de elementos do conjunto U.

 $\mathcal{P}(A)$: coleção de todos os subconjuntos de A.

 $f \circ g$: função composta de $f \circ g$. I: matriz identidade $n \times n$.

 A^{-1} : inversa da matriz inversível A.

 A^T : transposta da matriz A. det A: determinante da matriz A.

 \overline{AB} : segmento de reta unindo os pontos $A \in B$.

 \widehat{AB} : arco de circunferência de extremidades $A \in B$.

 $m(\overline{AB})$: medida (comprimento) de \overline{AB} .

Questão 1. Considere as seguintes afirmações sobre o conjunto $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$:

I. $\varnothing \in U \in n(U) = 10$.

II. $\varnothing \subset U$ e n(U) = 10.

III. $5 \in U \in \{5\} \subset U$.

IV. $\{0,1,2,5\} \cap \{5\} = 5$.

Pode-se dizer, então, que é (são) verdadeira(s)

A () apenas I e III.

B () apenas II e IV.

C () apenas II e III.

D () apenas IV.

E () todas as afirmações.

Questão 2. Seja o conjunto $S = \{ r \in \mathbb{Q} : r \ge 0 \text{ e } r^2 \le 2 \}$, sobre o qual são feitas as seguintes afirmações:

I. $\frac{5}{4} \in S \text{ e } \frac{7}{5} \in S.$

II. $\left\{x \in \mathbb{R} : 0 \le x \le \sqrt{2}\right\} \cap S = \emptyset$.

III. $\sqrt{2} \in S$.

Pode-se dizer, então, que é (são) verdadeira(s) apenas

A () I e II

B() IeIII

C () II e III

D () I

E () II

Questão 3. Seja α um número real, com $0 < \alpha < 1$. Assinale a alternativa que representa o conjunto de todos os valores de x tais que $\alpha^{2x} \left(\frac{1}{\sqrt{\alpha}} \right)^{2x^2} < 1$. **A** () $]-\infty,0] \cup [2,+\infty[$ **B** () $]-\infty,0[$ $\cup]2,+\infty[$ \mathbf{C} ()]0,2[

$$\mathbf{D}$$
 () $]-\infty,0[$

$$\mathbf{E}$$
 () $\left]2,+\infty\right[$

Questão 4. Considere a função $f: \mathbb{R} \to \mathbb{C}$, $f(x) = 2\cos x + 2i \sin x$. Então, $\forall x, y \in \mathbb{R}$, o valor do produto f(x) f(y) é igual a

$$\mathbf{A}$$
 () $f(x+y)$

B ()
$$2f(x+y)$$

$$\mathbf{C}$$
 () $4if(x+y)$

$$\mathbf{D}$$
 () $f(xy)$

$$\mathbf{E}$$
 () $2f(x)+2if(y)$

Questão 5. Considere 12 pontos distintos dispostos no plano, 5 dos quais estão numa mesma reta. Qualquer outra reta do plano contém, no máximo, 2 destes pontos. Quantos triângulos podemos formar com os vértices nestes pontos?

Questão 6. Seja $x \in \mathbb{R}$ e a matriz $A = \begin{bmatrix} 2^x & (x^2 + 1)^{-1} \\ 2^x & \log_2 5 \end{bmatrix}$. Assinale a opção correta.

A () $\forall x \in \mathbb{R}$, A possui inversa.

B () Apenas para x > 0, A possui inversa.

C() São apenas dois os valores de x para os quais A possui inversa.

Não existe valor de x para o qual A possui inversa. **D**()

Para $x = \log_2 5$, A não possui inversa.

Questão 7. Considerando as funções

$$\arcsin\left[-1,+1\right] \longrightarrow \left[-\pi/2,\ \pi/2\right] \quad \text{e arc } \cos\left[-1,+1\right] \longrightarrow \left[0,\ \pi\right] \ ,$$

assinale o valor de $\cos\left(\arcsin\frac{3}{5} + \arccos\frac{4}{5}\right)$.

A()
$$\frac{6}{25}$$
 B() $\frac{7}{25}$ **C**() $\frac{1}{3}$ **D**() $\frac{2}{5}$

B ()
$$\frac{7}{25}$$

C ()
$$\frac{1}{3}$$

D ()
$$\frac{2}{5}$$

E ()
$$\frac{5}{12}$$

Questão 8. Considere um polígono convexo de nove lados, em que as medidas de seus ângulos internos constituem uma progressão aritmética de razão igual a 5°. Então, seu maior ângulo mede, em graus,

Ques	s tão 9. O term	so independente de x n	o desenvolvimento do bi	nômio $\left(\sqrt{\frac{3\sqrt[3]{x}}{5x}} - \sqrt[3]{-}\right)$	$\left(\frac{5x}{3\sqrt{x}}\right)^{12}$ é	
A ()	729∛45	B () $972\sqrt[3]{15}$	$\mathbf{C}()$ 891 $\sqrt[3]{\frac{3}{5}}$	D () $376\sqrt[3]{\frac{5}{3}}$	E () $165\sqrt[3]{75}$	
Questão 10. Considere as afirmações dadas a seguir, em que A é uma matriz quadrada $n \times n$, $n \ge 2$:						
I. II.	O determinante de A é nulo se e somente se A possui uma linha ou uma coluna nula. Se $A = (a_{ij})$ é tal que $a_{ij} = 0$ para $i > j$, com $i, j = 1, 2,, n$, então det $A = a_{11} a_{22} a_{nn}$.					

- Se B for obtida de A, multiplicando-se a primeira coluna por $\sqrt{2} + 1$ e a segunda por $\sqrt{2} 1$, III. mantendo-se inalteradas as demais colunas, então $\det B = \det A$.

Então, podemos afirmar que é (são) verdadeira(s)

A() apenas II.

B() apenas III.

C() apenas I e II.

- **D**() apenas II e III.
- **E**() todas.

Questão 11. Considere um cilindro circular reto, de volume igual a 360π cm³, e uma pirâmide regular cuja base hexagonal está inscrita na base do cilindro. Sabendo que a altura da pirâmide é o dobro da altura do cilindro e que a área da base da pirâmide é de $54\sqrt{3}$ cm², então, a área lateral da pirâmide mede, em cm²,

- **A** () $18\sqrt{427}$
- **B** () $27\sqrt{427}$ **C** () $36\sqrt{427}$ **D** () $108\sqrt{3}$ **E** () $45\sqrt{427}$

Questão 12. O conjunto de todos os valores de α , $\alpha \in \left| -\frac{\pi}{2}, \frac{\pi}{2} \right|$, tais que as soluções da equação (em x)

$$x^4 - \sqrt[4]{48} \, x^2 + \lg \alpha = 0$$

são todas reais, é

A ()
$$\left[-\frac{\pi}{3}, 0 \right]$$

$$\mathbf{B} \ (\) \ \left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$$

$$\mathbf{A} () \left[-\frac{\pi}{3}, 0 \right] \qquad \mathbf{B} () \left[-\frac{\pi}{4}, \frac{\pi}{4} \right] \qquad \mathbf{C} () \left[-\frac{\pi}{6}, \frac{\pi}{6} \right] \qquad \mathbf{D} () \left[0, \frac{\pi}{3} \right] \qquad \mathbf{E} () \left[\frac{\pi}{12}, \frac{\pi}{3} \right]$$

$$\mathbf{D} \ (\) \ \left[0, \frac{\pi}{3}\right]$$

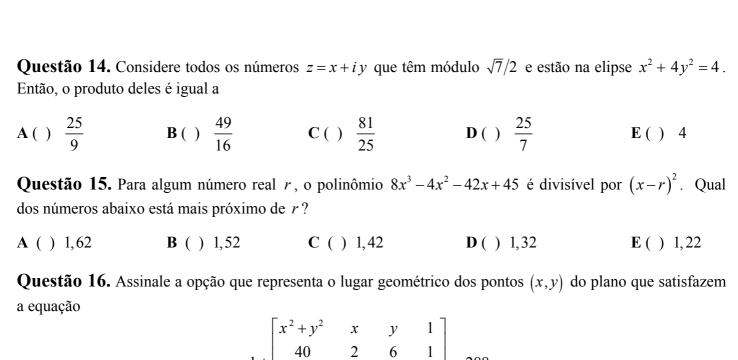
$$\mathbf{E}$$
 () $\left[\frac{\pi}{12}, \frac{\pi}{3}\right]$

Questão 13. Sejam as funções f e g definidas em \mathbb{R} por $f(x) = x^2 + \alpha x$ e $g(x) = -(x^2 + \beta x)$, em que α e β são números reais. Considere que estas funções são tais que

j	f	g		
Valor mínimo	Ponto de mínimo	Valor máximo	Ponto de máximo	
		9		
-1	< 0	$\frac{\overline{4}}{4}$	>0	

Então, a soma de todos os valores de x para os quais $(f \circ g)(x) = 0$ é igual a

- **A**() 0
- **B**() 2
- **C**() 4
- **D**() 6
- **E**() 8



$$\det \begin{bmatrix} x^2 + y^2 & x & y & 1 \\ 40 & 2 & 6 & 1 \\ 4 & 2 & 0 & 1 \\ 34 & 5 & 3 & 1 \end{bmatrix} = 288.$$

A () Uma elipse.

B () Uma parábola.

C () Uma circunferência.

D () Uma hipérbole.

E () Uma reta.

Questão 17. A soma das raízes da equação $z^3 + z^2 - |z|^2 + 2z = 0$, $z \in \mathbb{C}$, é igual a

A() -2

 \mathbf{B} () -1 \mathbf{C} () 0

E () 2

Questão 18. Dada a equação $x^3 + (m+1)x^2 + (m+9)x + 9 = 0$, em que m é uma constante real, considere as seguintes afirmações:

Se $m \in]-6,6[$, então existe apenas uma raiz real. I.

Se m = -6 ou m = +6, então existe raiz com multiplicidade 2. II.

 $\forall m \in \mathbb{R}$, todas as raízes são reais. III.

Então, podemos afirmar que é (são) verdadeira(s) apenas

A() I

B() II

C() III

D() II e III

E() IeII

Questão 19. Duas circunferências concêntricas C_1 e C_2 têm raios de 6 cm e $6\sqrt{2}$ cm, respectivamente. Seja \overline{AB} uma corda de C_2 , tangente à C_1 . A área da menor região delimitada pela corda \overline{AB} e pelo arco \overline{AB} mede, em cm²,

A () $9(\pi-3)$ **B** () $18(\pi+3)$ **C** () $18(\pi-2)$ **D** () $18(\pi+2)$ **E** () $16(\pi+3)$

Questão 20. A área total da superfície de um cone circular reto, cujo raio da base mede R cm, é igual à terça parte da área de um círculo de diâmetro igual ao perímetro da seção meridiana do cone. O volume deste cone, em cm³, é igual a

A () πR^3 **B** () $\pi \sqrt{2} R^3$ **C** () $\frac{\pi}{\sqrt{2}} R^3$ **D** () $\pi \sqrt{3} R^3$ **E** () $\frac{\pi}{\sqrt{3}} R^3$

As questões dissertativas, numeradas de 21 a 30, devem ser resolvidas e respondidas no caderno de soluções.

Questão 21. Seja A um conjunto não-vazio.

- **a.** Se n(A) = m, calcule $n(\mathcal{P}(A))$ em termos de m.
- **b.** Denotando $\mathcal{P}^1(A) = \mathcal{P}(A)$ e $\mathcal{P}^{k+1}(A) = \mathcal{P}(\mathcal{P}^k(A))$, para todo número natural $k \ge 1$, determine o menor k, tal que $n(\mathcal{P}^k(A)) \ge 65000$, sabendo que n(A) = 2.

Questão 22. Uma caixa branca contém 5 bolas verdes e 3 azuis, e uma caixa preta contém 3 bolas verdes e 2 azuis. Pretende-se retirar uma bola de uma das caixas. Para tanto, 2 dados são atirados. Se a soma resultante dos dois dados for menor que 4, retira-se uma bola da caixa branca. Nos demais casos, retira-se uma bola da caixa preta. Qual é a probabilidade de se retirar uma bola verde?

Questão 23. Determine os valores reais do parâmetro a para os quais existe um número real x satisfazendo $\sqrt{1-x^2} \ge a-x$.

Questão 24. Sendo
$$z = \frac{1+i}{\sqrt{2}}$$
, calcule $\left| \sum_{n=1}^{60} z^n \right| = \left| z + z^2 + z^3 + ... + z^{60} \right|$.

Questão 25. Para b > 1 e x > 0, resolva a equação em $x : (2x)^{\log_b 2} - (3x)^{\log_b 3} = 0$.

Questão 26. Considere a equação $x^3 + 3x^2 - 2x + d = 0$, em que d é uma constante real. Para qual valor de d a equação admite uma raiz dupla no intervalo 0.1?

Questão 27. Prove que, se os ângulos internos α , β e γ de um triângulo satisfazem a equação

$$sen(3\alpha) + sen(3\beta) + sen(3\gamma) = 0$$
,

então, pelo menos, um dos três ângulos α, β ou γ é igual a 60° .

Questão 28. Se A é uma matriz real, considere as definições:

- I. Uma matriz quadrada A é ortogonal se e só se A for inversível e $A^{-1} = A^T$.
- II. Uma matriz quadrada A é diagonal se e só se $a_{ij} = 0$, para todo i, j = 1, ..., n, com $i \neq j$.

Determine as matrizes quadradas de ordem 3 que são, simultaneamente, diagonais e ortogonais.

Questão 29. Sejam r e s duas retas que se interceptam segundo um ângulo de 60° . Seja C_1 uma circunferência de 3 cm de raio, cujo centro O se situa em s, a 5 cm de r. Determine o raio da menor circunferência tangente à C_1 e à reta r, cujo centro também se situa na reta s.

Questão 30. Sejam os pontos A:(2,0), B:(4,0) e $P:(3,5+2\sqrt{2})$.

- **a.** Determine a equação da circunferência C, cujo centro está situado no primeiro quadrante, passa pelos pontos A e B e é tangente ao eixo y.
- **b.** Determine as equações das retas tangentes à circunferência C que passam pelo ponto P.