NOTAÇÕES

: unidade imaginária; $i^2 = -1$ $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ |z|: módulo do número $z \in \mathbb{C}$ \mathbb{Z} : conjunto dos números inteiros \mathbb{R} : conjunto dos números reais \overline{z} : conjugado do número $z \in \mathbb{C}$ \mathbb{C} : conjunto dos números complexos : parte real de $z \in \mathbb{C}$ $\operatorname{Re} z$ \emptyset : conjunto vazio : parte imaginária de $z \in \mathbb{C}$ $\operatorname{Im} z$ $[a,b] = \{x \in \mathbb{R}; a \le x \le b\}$: matriz identidade $(a,b) = |a,b| = \{x \in \mathbb{R}; \ a < x < b\}$ A^{-1} : inversa da matriz inversível A $[a,b) = [a,b] = \{x \in \mathbb{R}; \ a \le x < b\}$ A^t : transposta da matriz A $(a,b] = [a,b] = \{x \in \mathbb{R}; \ a < x \le b\}$ $\det A$: determinante da matriz A A^C $A - B = \{x \in A; x \notin B\}$: complementar de A

 $\mathcal{P}(A)$: coleção de todos os subconjuntos de A

 \overline{AB} : segmento de reta unindo os pontos $A \in B$

AB: arco de circunferência de extremidades A e B

Observação: Os sistemas de coordenadas considerados são cartesianos ortogonais.

Questão 1. Considere uma população de igual número de homens e mulheres, em que sejam daltônicos 5% dos homens e 0,25% das mulheres. Indique a probabilidade de que seja mulher uma pessoa daltônica selecionada ao acaso nessa população.

A ()
$$\frac{1}{21}$$

B ()
$$\frac{1}{8}$$

$$\mathbf{C}\;()\;\frac{3}{21}$$

B()
$$\frac{1}{8}$$
 C() $\frac{3}{21}$ **D**() $\frac{5}{21}$ **E**() $\frac{1}{4}$

$$\mathbf{E}(\)\ \frac{1}{4}$$

Questão 2. Sejam $\alpha, \beta \in \mathbb{C}$ tais que $|\alpha| = |\beta| = 1$ e $|\alpha - \beta| = \sqrt{2}$. Então $\alpha^2 + \beta^2$ é igual a

A ()
$$-2$$
 B () 0 **C** () 1 **D** () 2

Questão 3. Considere o sistema Ax = b, em que

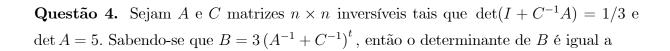
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & k & 6 \\ -1 & 3 & k - 3 \end{pmatrix} , \qquad b = \begin{pmatrix} 1 \\ 6 \\ 0 \end{pmatrix} \qquad e \qquad k \in \mathbb{R}.$$

Sendo T a soma de todos os valores de k que tornam o sistema impossível e sendo S a soma de todos os valores de k que tornam o sistema possível e indeterminado, então o valor de T - S é

A ()
$$-4$$
 B () -3 **C** () 0 **D** () 1

$$\mathbf{B}(\) -3$$

$$\mathbf{C}$$
 () 0



A ()
$$3^n$$
 B () $2 \cdot \frac{3^n}{5^2}$ **C** () $\frac{1}{5}$ **D** () $\frac{3^{n-1}}{5}$ **E** () $5 \cdot 3^{n-1}$

Questão 5. Um polinômio P é dado pelo produto de 5 polinômios cujos graus formam uma progressão geométrica. Se o polinômio de menor grau tem grau igual a 2 e o grau de P é 62, então o de maior grau tem grau igual a

$${f A}\ (\)\ 30 \qquad \qquad {f B}\ (\)\ 32 \qquad \qquad {f C}\ (\)\ 34 \qquad \qquad {f D}\ (\)\ 36 \qquad \qquad {f E}\ (\)\ 38$$

Questão 6. Um diedro mede 120°. A distância da aresta do diedro ao centro de uma esfera de volume $4\sqrt{3} \pi$ cm³ que tangencia as faces do diedro é, em cm, igual a

A ()
$$3\sqrt{3}$$
 B () $3\sqrt{2}$ **C** () $2\sqrt{3}$ **D** () $2\sqrt{2}$ **E** () 2

Questão 7. Considere o quadrado ABCD com lados de $10\,\mathrm{m}$ de comprimento. Seja M um ponto sobre o lado \overline{AB} e N um ponto sobre o lado \overline{AD} , equidistantes de A. Por M traça-se uma reta r paralela ao lado \overline{AD} e por N uma reta s paralela ao lado \overline{AB} , que se interceptam no ponto O. Considere os quadrados AMON e OPCQ, onde P é a intersecção de s com o lado \overline{BC} e Q é a intersecção de r com o lado \overline{DC} . Sabendose que as áreas dos quadrados AMON, OPCQ e ABCD constituem, nesta ordem, uma progressão geométrica, então a distância entre os pontos A e M é igual, em metros, a

A ()
$$15 + 5\sqrt{5}$$
 B () $10 + 5\sqrt{5}$ **C** () $10 - \sqrt{5}$ **D** () $15 - 5\sqrt{5}$ **E** () $10 - 3\sqrt{5}$

Questão 8. Considere o polinômio $p(x) = a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 - a_1$, em que uma das raízes é x = -1. Sabendo-se que a_1 , a_2 , a_3 , a_4 e a_5 são reais e formam, nesta ordem, uma progressão aritmética com $a_4 = 1/2$, então p(-2) é igual a

A ()
$$-25$$
 B () -27 **C** () -36 **D** () -39 **E** () -40

Questão 9. Sobre a equação polinomial $2x^4 + ax^3 + bx^2 + cx - 1 = 0$, sabemos que os coeficientes a,b,c são reais, duas de suas raízes são inteiras e distintas e 1/2 - i/2 também é sua raiz. Então, o máximo de a,b,c é igual a

$$\mathbf{A} (\) -1 \qquad \qquad \mathbf{B} (\) 1 \qquad \qquad \mathbf{C} (\) 2 \qquad \qquad \mathbf{D} (\) 3 \qquad \qquad \mathbf{E} (\) 4$$

Questão 10. É dada a equação polinomial

$$(a+c+2) x^3 + (b+3c+1) x^2 + (c-a) x + (a+b+4) = 0$$

com a, b, c reais. Sabendo-se que esta equação é recíproca de primeira espécie e que 1 é uma raiz, então o produto abc é igual a

$$A()-2$$

$$\mathbf{C}$$
 () 6

Questão 11. Sendo $[-\pi/2,\pi/2]$ o contradomínio da função arcoseno e $[0,\pi]$ o contradomínio da função arcocosseno, assinale o valor de

$$\cos\left(\arcsin\frac{3}{5} + \arccos\frac{4}{5}\right).$$

A()
$$\frac{1}{\sqrt{12}}$$
 B() $\frac{7}{25}$ **C**() $\frac{4}{15}$ **D**() $\frac{1}{\sqrt{15}}$ **E**() $\frac{1}{2\sqrt{5}}$

B ()
$$\frac{7}{25}$$

$$\mathbf{C} \ (\) \ \frac{4}{15}$$

D ()
$$\frac{1}{\sqrt{15}}$$

E ()
$$\frac{1}{2\sqrt{5}}$$

 Questão 12. Dada a cônica $\lambda: x^2-y^2=1$, qual das retas abaixo é perpendicular à λ no ponto $P = (2, \sqrt{3})$?

A ()
$$y = \sqrt{3}(x-1)$$

B ()
$$y = \frac{\sqrt{3}}{2}x$$

A ()
$$y = \sqrt{3}(x-1)$$
 B () $y = \frac{\sqrt{3}}{2}x$ **C** () $y = \frac{\sqrt{3}}{3}(x+1)$

D ()
$$y = \frac{-\sqrt{3}}{5}(x-7)$$
 E () $y = \frac{-\sqrt{3}}{2}(x-4)$

E ()
$$y = \frac{-\sqrt{3}}{2}(x-4)$$

Questão 13. O conjunto imagem e o período de $f(x) = 2 \operatorname{sen}^2(3x) + \operatorname{sen}(6x) - 1 \operatorname{são}$, respectivamente,

A ()
$$[-3,3] e 2\pi$$

B ()
$$[-2,2] e \frac{2\pi}{3}$$

B () [-2,2] e
$$\frac{2\pi}{3}$$
 C () [$-\sqrt{2},\sqrt{2}$] e $\frac{\pi}{3}$

D () [-1,3] e
$$\frac{\pi}{3}$$

E () [-1,3] e
$$\frac{2\pi}{3}$$

Questão 14. Para $x \in \mathbb{R}$, o conjunto solução de $|5^{3x} - 5^{2x+1} + 4 \cdot 5^x| = |5^x - 1|$ é

A ()
$$\left\{0, \ 2 \pm \sqrt{5}, \ 2 \pm \sqrt{3}\right\}$$

B()
$$\left\{0, 1, \log_5\left(2+\sqrt{5}\right)\right\}$$

$$\mathbf{C}(\) \left\{0, \ \frac{1}{2}\log_5 2, \ \frac{1}{2}\log_5 3, \ \log_5 \left(\frac{\sqrt{2}}{2}\right)\right\}$$

$$\mathbf{D}\left(\ \right)\ \left\{ 0,\ \log_{5}\left(2+\sqrt{5}\right),\ \log_{5}\left(2+\sqrt{3}\right),\ \log_{5}\left(2-\sqrt{3}\right) \right\}$$

$${\bf E}$$
 () A única solução é $x=0$

Questão 15. Um subconjunto D de \mathbb{R} tal que a função $f:D\to\mathbb{R}$, definida por $f(x) = |\ln(x^2 - x + 1)|$ é injetora, é dado por

$$\mathbf{A}$$
 () \mathbb{R}

$$\mathbf{B}()(-\infty,1]$$

$$\mathbf{C}$$
 () $[0, 1/2]$

$$\mathbf{D}(0,1)$$

B ()
$$(-\infty, 1]$$
 C () $[0, 1/2]$ **D** () $(0, 1)$ **E** () $[1/2, \infty)$

Questão 16. A soma de todas as soluções distintas da equação

$$\cos 3x + 2\cos 6x + \cos 9x = 0,$$

que estão no intervalo $0 \le x \le \pi/2$, é igual a

$$\mathbf{A}$$
 () 2π

A()
$$2\pi$$
 B() $\frac{23}{12}\pi$ **C**() $\frac{9}{6}\pi$ **D**() $\frac{7}{6}\pi$ **E**() $\frac{13}{12}\pi$

$${f C} \; (\) \; {9 \over 6} \pi$$

D ()
$$\frac{7}{6}\pi$$

$$\mathbf{E} \ (\) \ \frac{13}{12} \pi$$

Questão 17. Considere o conjunto $D = \{n \in \mathbb{N}; 1 \le n \le 365\}$ e $H \subset \mathcal{P}(D)$ formado por todos os subconjuntos de D com 2 elementos. Escolhendo ao acaso um elemento $B \in H$, a probabilidade de a soma de seus elementos ser 183 é igual a

A ()
$$\frac{1}{730}$$

$${f A} \ (\) \ {1\over 730} \ {f B} \ (\) \ {46\over 33\,215} \ {f C} \ (\) \ {1\over 365} \ {f D} \ (\) \ {92\over 33\,215} \ {f E} \ (\) \ {91\over 730}$$

$$\mathbf{C} \ (\) \ \frac{1}{365}$$

D ()
$$\frac{92}{33215}$$

$$\mathbf{E} \ (\) \ \frac{91}{730}$$

Questão 18. Considere o triângulo ABC isósceles em que o ângulo distinto dos demais, $B\hat{A}C$, mede 40°. Sobre o lado \overline{AB} , tome o ponto E tal que $A\hat{C}E = 15$ °. Sobre o lado \overline{AC} , tome o ponto D tal que $D\hat{B}C=35^{\circ}$. Então, o ângulo $E\hat{D}B$ vale

A ()
$$35^{\circ}$$

B ()
$$45^{\circ}$$
 C () 55° **D** () 75° **E** () 85°

$$\mathbf{E} (\) 85^{\circ}$$

Questão 19. Sejam X, Y, Z, W subconjuntos de \mathbb{N} tais que $(X - Y) \cap Z = \{1, 2, 3, 4\}$, $Y=\{5,6\}\,,\,Z\cap Y=\emptyset,\,W\cap (X-Z)=\{7,8\}\,,\,\,X\cap W\cap Z=\{2,4\}\,.$ Então o conjunto $[X \cap (Z \cup W)] - [W \cap (Y \cup Z)]$ é igual a

$$\mathbf{B} \ (\) \ \{1,2,3,4,7\}$$

$$\mathbf{C}$$
 () $\{1,3,7,8\}$

$$\mathbf{D}$$
 () $\{1,3\}$

$$\mathbf{E}(\)\ \{7,8\}$$

Questão 20. Sejam $r \in s$ duas retas paralelas distando $10 \,\mathrm{cm}$ entre si. Seja P um ponto no plano definido por r e s e exterior à região limitada por estas retas, distando $5\,\mathrm{cm}$ de r. As respectivas medidas da área e do perímetro, em cm² e cm, do triângulo equilátero PQR cujos vértices Q e R estão, respectivamente, sobre as retas r e s, são iguais a

A ()
$$175\frac{\sqrt{3}}{3}$$
 e $5\sqrt{21}$

A ()
$$175\frac{\sqrt{3}}{3}$$
 e $5\sqrt{21}$ **B** () $175\frac{\sqrt{3}}{3}$ e $10\sqrt{21}$ **C** () $175\sqrt{3}$ e $10\sqrt{21}$

C ()
$$175\sqrt{3} \text{ e } 10\sqrt{23}$$

D ()
$$175\sqrt{3} \text{ e } 5\sqrt{21}$$

E ()
$$700 \text{ e } 10\sqrt{21}$$

As questões dissertativas, numeradas de 21 a 30, devem ser resolvidas e respondidas no caderno de soluções.

Questão 21. Dado o conjunto $A = \{x \in \mathbb{R}; \sqrt{3x^2 + 2x} < x^2\}$, expresse-o como união de intervalos da reta real.

Questão 22. Determine as raízes em \mathbb{C} de $4z^6 + 256 = 0$, na forma a + bi, com $a, b \in \mathbb{R}$, que pertençam a

$$S = \{ z \in \mathbb{C}; \ 1 < |z + 2| < 3 \}.$$

Questão 23. Seja $f(x) = \ln(x^2 + x + 1)$, $x \in \mathbb{R}$. Determine as funções $h, g : \mathbb{R} \to \mathbb{R}$ tais que f(x) = g(x) + h(x), $\forall x \in \mathbb{R}$, sendo h uma função par e g uma função ímpar.

Questão 24. Sejam $\alpha, \beta, \gamma \in \mathbb{R}$. Considere o polinômio p(x) dado por

$$x^{5} - 9x^{4} + (\alpha - \beta - 2\gamma)x^{3} + (\alpha + 2\beta + 2\gamma - 2)x^{2} + (\alpha - \beta - \gamma + 1)x + (2\alpha + \beta + \gamma - 1)$$
.

Encontre todos os valores de α , β e γ de modo que x=0 seja uma raiz com multiplicidade 3 de p(x).

Questão 25. Uma matriz real quadrada A é ortogonal se A é inversível e $A^{-1} = A^t$. Determine todas as matrizes 2×2 que são simétricas e ortogonais, expressando-as, quando for o caso, em termos de seus elementos que estão fora da diagonal principal.

Questão 26. Determine todos os valores $\alpha \in \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$ tais que a equação (em x)

$$x^4 - 2\sqrt[4]{3}x^2 + \lg \alpha = 0$$

admita apenas raízes reais simples.

Questão 27. Em um espaço amostral com uma probabilidade P, são dados os eventos A, B e C tais que: P(A) = P(B) = 1/2, com A e B independentes, $P(A \cap B \cap C) = 1/16$, e sabe-se que $P((A \cap B) \cup (A \cap C)) = 3/10$. Calcule as probabilidades condicionais $P(C|A \cap B)$ e $P(C|A \cap B^C)$.

Questão 28. Um triângulo acutângulo de vértices $A, B \in C$ está inscrito numa circunferência de raio $\frac{5\sqrt{2}}{3}$. Sabe-se que \overline{AB} mede $2\sqrt{5}$ e \overline{BC} mede $2\sqrt{2}$. Determine a área do triângulo ABC.

Questão 29. Seja C uma circunferência de raio r e centro O e \overline{AB} um diâmetro de C. Considere o triângulo equilátero BDE inscrito em C. Traça-se a reta s passando pelos pontos O e E até interceptar em F a reta t tangente à circunferência C no ponto A. Determine o volume do sólido de revolução gerado pela rotação da região limitada pelo arco \widehat{AE} e pelos segmentos \overline{AF} e \overline{EF} em torno do diâmetro \overline{AB} .

Questão 30. Considere a parábola de equação $y = ax^2 + bx + c$, que passa pelos pontos (2,5), (-1,2) e tal que a,b,c formam, nesta ordem, uma progressão aritmética. Determine a distância do vértice da parábola à reta tangente à parábola no ponto (2,5).

INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 2008

GABARITO

Matemática		
1	Α	
2	В	
3	Α	
4	D	
5	В	
6	Е	
7	D	
8	Α	
9	С	
10	Е	
11	В	
12	Е	
13	С	
14	D	
15	С	
16	E	
17	Α	
18	D	
19	С	
20	В	

ITA Matemática 2008 - Gabarito

01. A	02. B	03 . A	04. D
05 . B	06. E	07. D	08. A

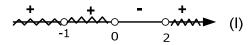
Discursivas

21. Temos:

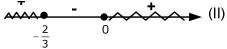
$$\sqrt{3x^2 + 2x} < x^2 \Rightarrow 3x^2 + 2x < x^4 \Rightarrow x^4 - 3x^2 - 2x > 0$$

O polinômio $P(x) = x^4 - 3x^2 - 2x$ tem como raízes -1 (raiz dupla), 0 e 2.

Queremos P(x) > 0, ou seja, $x(x+1)^2$ (x-2) > 0. Assim, segue:



Mas temos ainda que $3x^2 + 2x \ge 0$, ou seja, $x(3x+2) \ge 0$. Daí vem:



Fazendo a intersecção, obtém-se:

(I)
$$\cap$$
 (II)
$$\begin{array}{c} -1 \\ -\frac{2}{3} \end{array}$$

Logo, o conjunto solução é dado por

$$S = \left\{ x \in R \middle| x < -\frac{2}{3} \text{ ou } x > 2 \text{ e } x \neq -1 \right\}$$

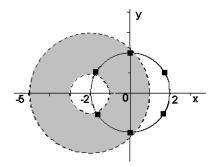
22.

$$4z^{6} + 256 = 0 \Rightarrow z = \sqrt[6]{-64}$$

$$\Rightarrow V = \left\{2\operatorname{cis}\frac{\pi}{6}; 2\operatorname{cis}\frac{\pi}{6}; 2\operatorname{cis}\frac{5\pi}{6}; 2\operatorname{cis}\frac{7\pi}{6}; 2\operatorname{cis}\frac{3\pi}{2}; 2\operatorname{cis}\frac{11\pi}{6}\right\}$$

A região limitada pela inequação 1 < |z+2| < 3 é a coroa circular (ver figura) de raios 3 e 1 e centro no ponto (-2, 0). Assim, as únicas duas raízes da equação que não pertencem à região hachurada são $2 \text{cis} \frac{\pi}{6} \text{ e } 2 \text{cis} \frac{11\pi}{6}$.

Então: S
$$\cap$$
 V = $\begin{cases} \pm 2i ; -\sqrt{3} \pm i \end{cases}$



23. Observe que, dada uma função f(x), ela pode ser decomposta na soma de uma função par com uma função ímpar. Para tanto, note que:

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$$
,

onde a função $\frac{f(x)+f(-x)}{2}$ é par e a função $\frac{f(x)-f(-x)}{2}$ é ímpar. Assim:

$$h(x) = \frac{\ln(x^2 + x + 1) + \ln(x^2 - x + 1)}{2} = \frac{\ln((x^2 + 1)^2 - x^2)}{2} \Rightarrow h(x) = \frac{1}{2}\ln(x^4 + x^2 + 1).$$

$$g(x) = \frac{\ln(x^2 + x + 1) - \ln(x^2 - x + 1)}{2} = \frac{\ln\left(\frac{x^2 + x + 1}{x^2 - x + 1}\right)}{2} \Rightarrow g(x) = \frac{1}{2}\ln\left(\frac{x^2 + x + 1}{x^2 - x + 1}\right).$$

Logo,
$$f(x) = \frac{1}{2} ln(x^4 + x^2 + 1) + \frac{1}{2} ln(\frac{x^2 + x + 1}{x^2 - x + 1})$$

24. Como 0 é raiz tripla de ρ_r temos $\rho(x) = x^3.q(x), q \in \mathbb{R}[x].$

Logo é necessário e suficiente que

$$\begin{cases} \alpha + 2\beta + 2\gamma - 2 = 0 \\ \alpha - \beta - \gamma + 1 = 0 \\ 2\alpha + \beta + \gamma - 1 = 0 \end{cases} \Leftrightarrow \begin{cases} \alpha = 0 \\ \beta + \gamma = 1 \end{cases}$$

A resposta é $\alpha = 0$, $\beta + \gamma = 1$, $\beta, \gamma \in \mathbb{R}$ Como 0 é raiz tripla de ρ_{r} temos $\rho(x) = x^3.q(x), q \in \mathbb{R}[x].$

Logo é necessário e suficiente que

$$\begin{cases} \alpha + 2\beta + 2\gamma - 2 = 0 \\ \alpha - \beta - \gamma + 1 = 0 \\ 2\alpha + \beta + \gamma - 1 = 0 \end{cases} \Leftrightarrow \begin{cases} \alpha = 0 \\ \beta + \gamma = 1 \end{cases}$$

$$\alpha = 0, \ \beta + \gamma = 1, \ \beta, \gamma \in \mathbb{R}, \beta \neq 2, \gamma \neq -1.$$

25. De $A^{-1} = A^{t}$, temos: $A^{t} \cdot A = I$

Como A é simétrica, temos $A^t = A$. Logo: $A^2 = I$. (*) Além disso, por ser A simétrica ela é da forma:

$$A = \begin{bmatrix} a & \mathbf{b} \\ \mathbf{b} & \mathbf{c} \end{bmatrix}.$$

A partir de (*):

$$\begin{bmatrix} a & b \\ b & c \end{bmatrix} \cdot \begin{bmatrix} a & b \\ b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a^2 + b^2 & \text{ab} + \text{bc} \\ \text{ab} + \text{bc} & \text{b}^2 + c^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow$$

$$\begin{cases} a^2 + b^2 = 1 \\ ab + bc = 0 \Rightarrow \begin{cases} a^2 + b^2 = 1 \\ b(a+c) = 0 \\ b^2 + c^2 = 1 \end{cases}$$

Da segunda equação:

b = 0 ou a + c = 0Se b = 0, então $a = \pm 1$ e $c = \pm 1$. Se a + c = 0, ou seja, a = - c, Dado que $a^2 = 1 - b^2$, temos: $a = \pm \sqrt{1 - b^2}$. Portanto: $c = \mp \sqrt{1 - b^2}$.

$$A = \begin{bmatrix} \pm \sqrt{1 - b^2} & \mathbf{b} \\ \mathbf{b} & \mp \sqrt{1 - b^2} \end{bmatrix}, \text{ com } b \in [-1, 1] \text{ ou}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ ou } A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

26. Para que a equação em x tenha apenas raízes reais simples é necessário e suficiente que a equação em y

$$y^2 - 2\sqrt[4]{3}y + tq\alpha = 0$$

Tenha duas raízes reais positivas distintas. A condição para raízes reais distintas é

$$\Delta > 0 \iff tg\alpha < \sqrt{3}$$
.

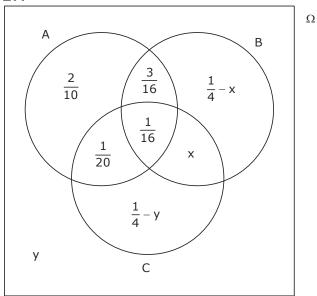
Além disso, a menor raiz deve ser positiva, ou seja,

$$\sqrt[4]{3} - \sqrt{\sqrt{3} - tg\alpha} > 0 \Leftrightarrow a < tg\alpha < \sqrt{3}$$
.

Assim, o conjunto de todos os valores de lpha pedidos é

$$0, \frac{\pi}{3}$$
.

27.



Como A e B são independentes,

$$P(C/A \cap B) = \frac{P(C \cap (A \cap B))}{P(A \cap B)} =$$

$$= \frac{P(A \cap B \cap C)}{P(A).P(B)} = \frac{\frac{1}{16}}{\frac{1}{2} \cdot \frac{1}{2}} = \frac{1}{4}$$

$$\Leftrightarrow P(C/A \cap B) = \frac{1}{4}$$

Novamente, como A e B são independentes,

$$P(A \cap B) = P(\overline{A} \cap B) = P(A \cap \overline{B}) = P(\overline{A} \cap \overline{B}) = \frac{1}{4}.$$

Em particular,

$$P(A \cap B \cap \overline{C}) = P(A \cap B) - P(A \cap B \cap C) = \frac{3}{16}.$$

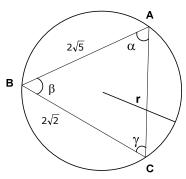
Como

$$P((A \cap B) \cup (A \cap C)) = P(A \cap (B \cup C)) = \frac{3}{10},$$

$$P(A \cap \overline{B} \cap C) = \frac{1}{20}$$

$$e^{ P(C \ / \ A \ \cap \overline{B}) = \frac{P(C \ \cap (A \ \cap \overline{B}))}{P(A \ \cap \overline{B})} = \frac{1}{5}. }$$

28.



Pela lei dos senos temos:

$$\frac{2\sqrt{2}}{\text{sen}\alpha} = \frac{2\sqrt{5}}{\text{sen}\gamma} = 2r \Rightarrow \frac{2\sqrt{2}}{\text{sen}\alpha} = \frac{2\sqrt{5}}{\text{sen}\gamma} = \frac{10\sqrt{2}}{3} \Rightarrow$$

$$\Rightarrow$$
 sen $\alpha = \frac{3}{5}$ e sen $\gamma = \frac{3\sqrt{10}}{10}$

 $sen \beta = sen \left[180^{\circ} - (\alpha + \gamma)\right] = sen (\alpha + \gamma) = sen \alpha cos \gamma + sen \gamma cos \alpha = \frac{3}{5} \cdot \frac{\sqrt{10}}{10} + \frac{3\sqrt{10}}{10} \cdot \frac{4}{5}, pois$

sen
$$\gamma \cos \alpha = \frac{3}{5} \cdot \frac{\sqrt{10}}{10} + \frac{3\sqrt{10}}{10} \cdot \frac{4}{5}$$
, pois

$$\cos\gamma = \sqrt{1 - \left(\frac{3\sqrt{10}}{10}\right)^2} \ e \ \cos\alpha = \sqrt{1 - \left(\frac{3}{5}\right)^2} \ . \ \text{Assim,}$$

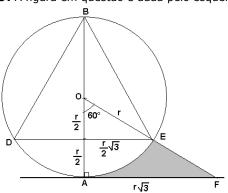
seaue:

$$sen\beta = \frac{3\sqrt{10}}{50} + \frac{12\sqrt{10}}{50} = \frac{15\sqrt{10}}{50} = \frac{3\sqrt{10}}{10}$$

A área do ∆ABC é dada por:

Área ΔABC = $\frac{1}{2}$. 2 $\sqrt{5}$. 2 $\sqrt{2}$. senβ = $\frac{1}{2}$. 2 $\sqrt{5}$. 2 $\sqrt{2}$. $\frac{3\sqrt{10}}{10}$ $=\frac{2\sqrt{10} \cdot 3\sqrt{10}}{10} = 6 \text{ u.a } \Leftrightarrow \boxed{\text{Área } \triangle ABC = 6 \text{ u.a}}$

29. A figura em questão é dada pelo esquema abaixo:



A rotação de AEF em torno do eixo AB gera um sólido cujo volume é dado pela retirada de uma calota esférica (altura r/2 e raio da seção $r\sqrt{3}/2$), de um tronco de cone (altura r/2 e raios de base $r\sqrt{3}/2$ e $r\sqrt{3}$).

$$\begin{split} &V_{TRONCO} = \frac{h}{3} \Big(S_B + S_b + \sqrt{S_B.S_b} \Big) \Longrightarrow \\ &V_{TRONCO} = \frac{r}{6} \Bigg(3\pi r^2 + \frac{3\pi r^2}{4} + \sqrt{3\pi r^2.\frac{3\pi r^2}{4}} \Bigg) = \frac{21\pi r^3}{24} \\ &V_{CALOTA} = \frac{\pi h}{6} \Big(3R^2 + h^2 \Big) = \frac{\pi r}{12} \Bigg[3 \bigg(\frac{r\sqrt{3}}{2} \bigg)^2 + \bigg(\frac{r}{2} \bigg)^2 \Bigg] = \frac{5\pi r^3}{24} \\ &V_S = V_{TRONCO} - V_{CALOTA} = \frac{21\pi r^3}{24} - \frac{5\pi r^3}{24} = \frac{2}{3} \pi r^3 \end{split}$$

30. Como a, b e c estão em P.A., podemos escrever:

$$a = b - r$$
 , $c = b + r$.

Substituindo então esses valores na equação da parábola, encontramos $y=\left(b-r\right)\!x^2+bx+b+r$.

Como os pontos (2,5) e (-1,2) estão na parábola, temos:

$$\begin{cases} 4(b-r)+2b+b+r=5 \\ b-r-b+b+b+r=2 \end{cases} \Rightarrow \begin{cases} 7b-3r=5 \\ b=2 \end{cases} \Rightarrow \begin{cases} b=2 \\ r=3 \end{cases}$$

Assim, temos que a = 2 - 3 = -1 e c = 2 + 3 = 5. Desse modo, a parábola é $y = -x^2 + 2x + 5$.

Seja r a reta que tangente à parábola em (2,5). Usando a relação y - $y_0 = m(x - x_0)$, temos:

$$r: y = m(x - 2) + 5$$

Igualando as equações da parábola e da reta:

$$m(x-2) + 5 = -x^2 + 2x + 5 \implies x^2 + (m-2)x - 2m = 0$$

Como a reta é tangente, existe um único valor de x que deve satisfazer a equação do segundo grau acima, de modo que obrigatoriamente temos que o discriminante dessa equação deve ser zero. Assim:

$$m^2+4m+4=0 \Rightarrow m=-4\pm\frac{\sqrt{4^2-4.4}}{2} \Rightarrow m=-2$$

Logo, a reta tangente é y+2x-9=0. O vértice da parábola é dado por:

$$V = \left(\frac{-b}{2a}, \frac{-\Delta}{4a}\right) = \left(\frac{-2}{-2}, -\frac{2^2 - 4.(-1).5}{-4}\right) = (1, 6).$$

Aplicando finalmente a fórmula da distância de ponto à reta, encontramos:

distância =
$$\left| \frac{6 + 2.1 - 9}{\sqrt{1^2 + 2^2}} \right| = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$$

Cortesia: Resoluções Alferes Vestibulares