

MINISTÉRIO DA AERONÁUTICA CENTRO TÉCNICO AEROESPACIAL INSTITUTO TECNOLÓGICO DE AERONÁUTICA

CADERNO DE QUESTÕES

MATEMÁTICA E DESENHO GEOMÉTRICO

INSTRUÇÕES

- Esta prova consta de 15 (quinze) questões do tipo Teste de Múltipla-Escolha, sendo as 10 (dez) primeiras de MATEMÁTICA e as 5 (cinco) últimas de DESENHO GEOMÉTRICO. Verifique se seu Caderno de Questões está completo.
- 2. A duração da Prova é de 04h00.
- Além deste Caderno de Questões, Você receberá o Caderno de Respostas, papel para rascunho e, antes de terminar a Prova, o Cartão para marcação das respostas.
- 4. Assinale seu Cartão com cuidado, calcando bem o lápis nº 1 no espaço correspondente à alternativa escolhida.
- 5. Só assinale no Cartão as questões realmente resolvidas no Caderno de Respostas, pois somente estas serão consideradas para avaliação.
- 6. Apenas as Questões de Desenho Geométrico deveião ser resolvidas por métodos gráficos.
- 7. Para cada questão assinale somente uma alternativa; mais de uma resposta anula a questão.
- 8. Não será permitido o uso de régua de cálculo, máquina de calcular, tabelas, formulários etc., bem como empréstimo de material.
- 9. Ao término da Prova, todo material deverá ser devolvido ao FISCAL, exceto o Caderno de Questões.

- 1. Sejam A, B, C matrizes reais 3×3 , satisfazendo às seguintes relações: $AB = C^{-1}$, B = 2A. Se o determinante de C é 32, qual é o valor do módulo do determinante de A?
 - () A 1/16
 - () B 1/8
 - () C 1/4
 - ()D 8
 - () E 4
- 2. Se a, b, c são raízes da equação $x^3 rx + 20 = 0$, onde r é um número real, podemos afirmar que o valor de $a^3 + b^3 + c^3$ é :
 - () A -60
 - () B 62+r
 - () C $62 + r^2$
 - () D $62 + r^3$
 - () E 62-r
- 3. Seja f uma função real definida para todo x real tal que : f é ímpar; f(x+y)=f(x)+f(y); e $f(x)\geqslant 0$, se $x\geqslant 0$. Definindo $g(x)=\frac{f(x)-f(1)}{x}$, se $x\neq 0$, e sendo n um número natural, podemos afirmar que :
 - () A f é não-decrescente e g é uma função ímpar
 - () B f é não-decrescente e g é uma função par
 - () C g é uma função par e $0 \le g(n) \le f(1)$
 - () D g é uma função ímpar e $0 \le g(n) \le f(1)$
 - () E f é não-decrescente e $0 \le g(n) \le f(1)$

4. Considere o triângulo ABC, onde AD é a mediana relativa ao lado BC. Por um ponto arbitrário M do segmento BD, tracemos o segmento MP paralelo a AD, onde P é o ponto de intersecção desta paralela com o prolongamento do lado AC (figura 1). Se N é o ponto de intersecção de AB com MP, podemos afirmar que:

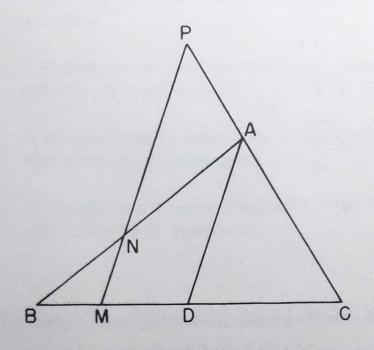


Fig. 1

2BM= MP MN MP 2CM = MN B MP 2ABMN C 2ADMP MN D 2AC MP = MN E

- 5. Se a e b são ângulos complementares, $0 < a < \frac{\pi}{2}$, $0 < b < \frac{\pi}{2}$ e $\frac{sen \ a + sen \ b}{sen \ a sen \ b} = \sqrt{3}$, então $\frac{3a}{5} + \cos(3b)$ é igual a :
 - () A $\sqrt{3}$
 - () B $\frac{\sqrt{3}}{3}$
 - () C $\sqrt{2}$
 - () D $\frac{\sqrt{2}}{2}$
 - () E 1
- 6. Considere uma Progressão Geométrica, onde o primeiro termo é a, a>1, a razão é q, q>1, e o produto dos seus termos é c. Se $\log \frac{b}{a}=4$, $\log \frac{b}{q}=2$ e $\log \frac{c}{c}=0.01$, quantos termos tem esta Progressão Geométrica?
 - () A 12
 - () B 14
 - () C 16
 - () D 18
 - () E 20

- 7. Estudando a equação $32z^5 = (z + 1)^5$ no plano complexo, podemos afirmar que :
 - () A A equação possui todas as raízes imaginárias, situadas numa circunferência de raio 1.
 - () B A equação possui 4 raízes imaginárias situadas uma em cada quadrante.
 - () C A equação possui 2 raízes imaginárias, uma no 1° quadrante e outra no 4° quadrante.
 - () D A equação possui 4 raízes imaginárias, duas no 2° quadrante e outras duas no 3° quadrante.
 - () E A equação tem 4 raízes imaginárias, duas no 1º quadrante e outras duas no 4º quadrante.
- 8. Considere o sistema $\begin{cases} (x-y)^2 + x(1+2y) \leq 7/8 \\ x-y+a=0. \end{cases}$

Se $a=a_0$ é o número real positivo para o qual a solução do sistema, $x=x_0$, $y=y_0$, é única, podemos afirmar que :

() A
$$\frac{x_0}{y_0} = \frac{7}{3}$$

() B
$$\frac{y_0}{x_0} = \frac{6}{5}$$

()
$$C \frac{x_0}{y_0} = -\frac{6}{5}$$

() D
$$\frac{y_0}{x_0} = -\frac{3}{5}$$

() E
$$x_0 y_0 = -\frac{15}{8}$$

9. Considere o tetraedro regular (4 faces iguais) (figura 2) inscrito em uma esfera de raio R, onde R mede $3\ cm$. A soma das medidas de todas as arestas do tetraedro é dada por :

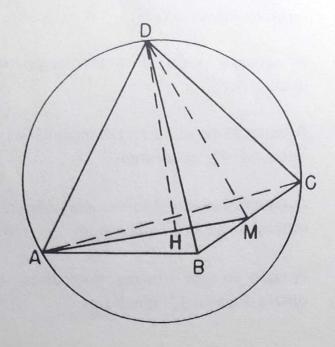


Fig. 2

- () A $16\sqrt{3}$ cm
- () B $13\sqrt{6}$ cm
- () C $12\sqrt{6}$ cm
- () D $8\sqrt{3}$ cm
- () E $6\sqrt{3}$ cm

10. Considere o problema anterior, isto é, o tetraedro regular inscrito em uma esfera de raio R, onde R mede 3 cm, sendo HD sua altura (figura 2). A diferença entre o volume do tetraedro e o volume do sólido gerado pela rotação do triângulo DHM em torno de HD é dada por :

() A
$$(8\sqrt{3} - \frac{8}{3}\pi) \text{ cm}^3$$

() B
$$(5\sqrt{2} - \frac{1}{2}\sqrt{5}\pi) cm^3$$

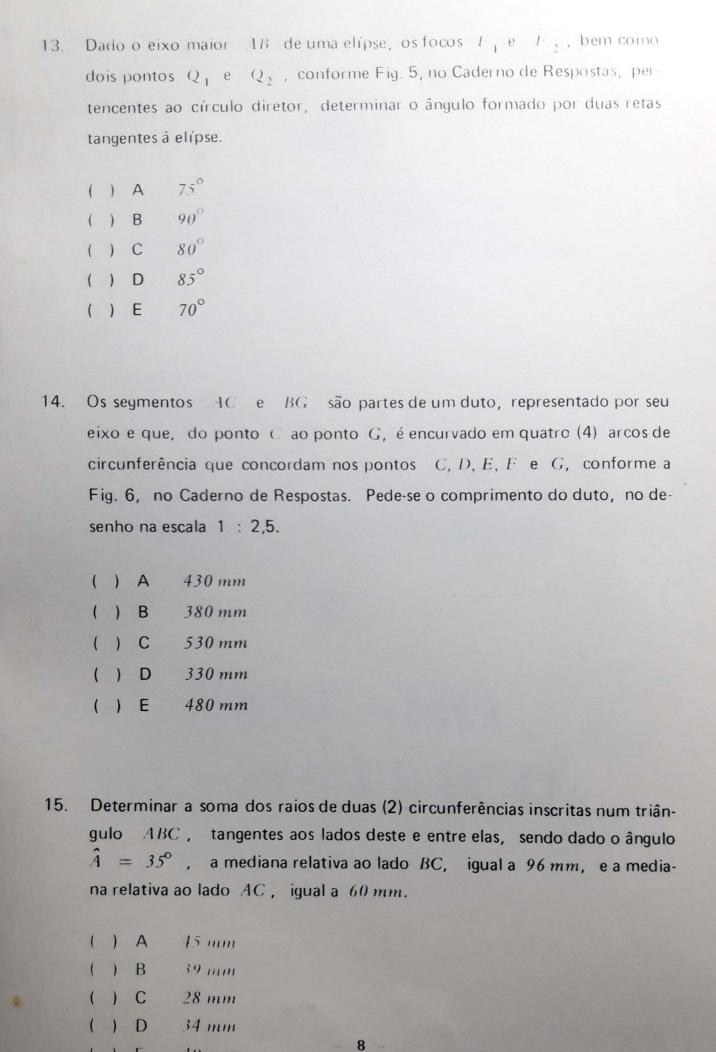
() C
$$(4\sqrt{2} - \frac{4}{5}\sqrt{3}\pi) cm^3$$

() D
$$(3\sqrt{3}-\frac{3}{5}\sqrt{3}\pi) cm^3$$

() E
$$(7\sqrt{2} - \frac{\sqrt{5}}{3}\pi) cm^3$$

OBSERVAÇÃO

- As questões nº s 11, 12, 13, 14 e 15 deverão ser *RESOLVIDAS GRAFICAMENTE*.
- 11. Determinar, por construção geométrica, o comprimento da diagonal de um quadrado de área equivalente à da coroa da Fig. 3, representada no Caderno de Respostas.
 - () A 47 mm
 - () B 57 mm
 - () C 45 mm
 - () D 50 mm
 - () E 62 mm
- 12. São dadas duas circunferências, uma com raio igual a 20 mm e outra com 25 mm, dois pontos P e Q e duas retas r e s, conforme a Fig. 4, no Caderno de Respostas. As circunferências desenvolvem meia volta sobre as retas, sem escorregar, no sentido horário, partindo dos pontos P e Q, descrevendo duas curvas cíclicas, sendo uma ENCURTADA e outra ALONGADA. Pede-se determinar o ponto de intersecção das duas curvas.
 - () A 2
 - () B 4
 - () C 5
 - () D 1
 - () E 3



E

40 mm